三明市沙县青州片区集中供热能源 综合利用项目 环境影响报告书 (送申稿)

环评单位:中新绿能(厦门) 环保有限公司

建设单位: 三明市沙县正通能源有限公司

二0二五年十月

编制单位和编制人员情况表

項目偏号		1x5191						
建设项目名称		三明市沙县农州片区集中	三明市沙县資州片区集中供热能遊综合利用項目					
建设项目类别		41-091熱力生产和供应 1	程(包括建设单位自	[建自用的供热工程]				
环境影响评价文	件类型	报告书						
一、建设单位作	身况		人多用形被水					
单位名称(蓝章)	三明市沙县正通能沒有開	with the same of t	>				
统一社会信用代	EU,	91350427MADLEQN03C	The same					
法定代表人 (签	章)	刘达元 元刘	35040310					
主要负责人(答	(字)	旅旅的中达						
直接负责的主管	人员 (答字)	符四 符時						
二、编制单位性	會況		18 /7 1					
单位名称(盖章)	中新綠能 (厦门) 环保金	服公司 光					
统一社会信用代	FB.	91350212MA8RY \$135	唐					
三、编制人员位	市况	(A	(A)					
1.偏制主持人			10175144					
姓名	WESES	资格证书管理号	信用编号	- 差字				
陈俊杰	03520	240535000000022	BH056748	為後去				
2 主要煽制人	65							
经数	3	要编写内容	信用编号	签字				
罪性的	价: 环境风险	析:环境影响预测与评 评价:环境保护措施及 :环境管理与监测计划	BH049770	智里區				
陈俊杰		状调查与评价:环境影 分析:评价结论与建议	BH056748	属设本				

建设项目环境影响报告书(表)编制情况承诺书

本单位 中新绿能 (厦门) 环保有限公司 (统一社 会信用代码 91350212MA8RYL8BXK) 郑重承诺: 本单位 符合《建设项目环境影响报告书(表)编制监督管理办法》第 九条第一款规定,无该条第三款所列情形,不属于 (属于/ 不属于) 该条第二款所列单位: 本次在环境影响评价信用平台 提交的由本单位主持编制的 三明市沙县青州片区集中供热 能源综合利用项目 环境影响报告书(表)基本情况信息真实 准确、完整有效,不涉及国家秘密;该项目环境影响报告书(表) 的编制主持人为 陈俊杰 (环境影响评价工程师职业资格证 书管理号 03520240535000000022 , 信用编号 BH056748),主要编制人员包括 陈俊杰 (信用编号 BH056748)、 郭佳婷 (信用编号 BH049770) (依次全 部列出) 等 2 人,上述人员均为本单位全职人员:本单位 和上述编制人员未被列入《建设项目环境影响报告书(表)编 制监督管理办法》规定的限期整改名单、环境影响评价失信"黑 名单"。

承诺单位(公章): 三 2025年10月28日

社会保险参保缴费情况证明(单位)

前号: SB000391202506569656

单位:元。人

单位编号	durada A	统一社会信用代码	0.500313846914898
名称	The carrie was and	主管税务机关	DEMONSTRATE OF STREET
目前参保人教	211	当月新增人数	
费飲所展期起	-7m-7 1em-4	劳数形规则止	3125-01

竞款所属斯起止	做费 人数	企业形 发	机机件名	被声声等	基本医疗	公务员医疗 补助	高休医疗	城乡张疗	失业	工伤	基本医疗 (生育)	联业年金
3031-07 (E3025-07	1	1761.26	-	Contract of the Contract of th	2601.61				303.04	10.11	105.75	
3001-04 E3031-80	1	6760.04			2637, 87			100	703.16	10,81	10.80	
(025-09 E2055-09	1	470E-24			0037.40				290, 08	62.81	217.21	
2829-19 M2825-28	1	A790.24			3/01.41				300.00	00.50	82.5	
Alle					45 70 10 2	E 10 AND THE BOOK OF	SHEET AND	\$2.5 St. 9	0.000	0.0		

读明。1. 抗膨化保费规则,参保月的费款在次月入库的。属于正常推荐,非补缴。 2. 以上载驱纥为参保单位(参保人)会行中报数据。参接单位(参保人)应对其中报数据的真实。准确也非担法律责任。 3. 空司以通过以下为式进行助证。 (1) 通过属门市校务局子款App或者缴信封一封动能,扫摄左上为二维构进行验证。

HERAL SENSO

整区 人民 2年

社会保险参保缴费情况证明附表

			悬否				股种													
M-65	证件号码	多保身份	是在前位保	費款 所属 期起	費款 所属 期止	級費 工費	企业 非老	机类养老	城乡 乔岩	基本 医疗	公	高休	城乡医疗	外北	工例	基本 医疗 (生 育)	联业 小 年至	6		保月标识
0.000		IN-KAW	1	2025-07	1075-07	1100.E	979. 12			276.91				65.14	6.81	11.00			211 41-	
族技力		100-4-0-00	V.	3005-98	2025-08	3300.0	976.33			176, 61				41.41	8.83	329		(65.0	\$35 m	
MRO		300-4-910	γ.	3025-78	2021-19	3300.F	970, 82		1	376.65				65.44	6.61	31.70		12 00	232 (89-	
砂塊肉 熱物肉 純物肉 肉物肉		30-6世紀	Ţ	2025-18	2025-38	3300, 6	970, 12			276, 81				10.50	0.81	31,48		107.0	28	

目录

1	概述	1
	1.1 项目由来	1
	1.2 项目必要性	1
	1.3 建设项目特点	2
	1.4 评价工作过程	3
	1.5 分析判定相关情况	4
	1.5.1 与国家产业政策符合性分析	4
	1.5.2 与相关规划符合性分析	7
	1.5.3 选址合理性分析	_
	1.5.4"三线一单"相关情况分析判定	15
	1.5.5 与三明沙县机场净空区要求符合性分析	20
	1.6 关注的主要环境问题及环境影响	21
	1.7 环境影响评价主要结论	22
2	总则	_
	2.1 编制依据	
	2.1.1 法律、法规及规章	23
	2.1.2 技术规范	
	2.1.3 有关的环境政策、规划及文件	
	2.1.4 其他相关依据	
	2.2 环境影响因素识别和评价因子筛选	
	2.2.1 环境影响因素识别	
	2.2.2 评价因子筛选	
	2.3 环境功能区划和评价标准	
	2.3.1 环境功能区划及环境质量标准	
	2.3.2 污染物排放标准	
	2.4 评价工作等级	35
	2.4.1 地表水环境	
	2.4.2 地下水环境	
	2.4.3 大气环境	
	2.4.4 声环境	
	2.4.5 土壤环境	
	2.4.6 环境风险	
	2.4.7 生态影响	
	2.5 评价范围及环境保护目标	
	2.5.1 评价范围	
	2.5.2 主要环境保护目标	
	2.6 评价工作重点	
3	建设项目工程分析	
	3.1 项目基本情况	
	3.1.1 产品方案	
	3.1.2 工程组成	
	3.1.3 热经济性指标	47

3.2 供热规模及负荷	47
3.2.1 热负荷	47
3.2.2 供热管网	48
3.3 拟取代园区锅炉情况	51
3.4 锅炉房工程	51
3.4.1 锅炉选型及规模	51
3.4.2 燃料储存与供应系统	52
3.4.3 燃烧系统	53
3.4.4 热力系统	54
3.4.5 除灰渣系统	55
3.4.6 化水系统	56
3.4.7 烟气净化系统	58
3.5 总平布置合理性	60
3.6 主要生产设备	63
3.7 原辅料及燃料使用	65
3.7.1 原辅材料及燃料用量	65
3.7.2 燃料质量及来源	65
3.7.3 脱硫剂石灰石	66
3.7.4 脱硝剂氨水	66
3.7.5 0#轻柴油	67
3.8 物料平衡	68
3.8.1 全厂物料平衡	68
3.8.2 硫物料平衡	68
3.8.3 汞物料平衡	68
3.8.4 氨物料平衡	68
3.9 工艺流程及产污环节	69
3.9.1 锅炉供热工艺流程	69
3.9.2 辅助设施	72
3.9.3 产污环节汇总	73
3.10 给排水工程	75
3.10.1 供水系统	75
3.10.2 排水系统	75
3.10.3 给排水平衡	75
3.11 施工期污染源分析	80
3.11.1 施工废水	80
3.11.2 施工期废气	80
3.11.3 施工期噪声	81
3.11.4 施工期固体废物	
3.11.5 施工期生态影响	
3.12 运营期污染源分析	
3.12.1 废气源强	
3.12.2 废水源强	
3.12.3 噪声源强	
3.12.4 固体废物	

	3.12.5 污染物排放总量	106
4	环境现状调查与评价	108
	4.1 地理位置	108
	4.2 自然环境概况	112
	4.2.1 地形地貌	112
	4.2.2 气象特征	113
	4.2.3 水文概况	113
	4.2.4 土壤植被	117
	4.3 资源分布与利用现状	117
	4.3.1 土地资源	
	4.3.2 水资源	117
	4.3.3 矿产资源	
	4.3.4 森林资源	
	4.4 沙县青州化工产业集中区 B 片区污染源现状	
	4.4.1 入驻企业概况	
	4.4.2 园区废水污染物排放情况	
	4.4.3 园区废气污染物排放情况	
	4.5 马铺化工集中区污水处理厂概况	123
	4.6 应急设施及管网建设	124
	4.7 环境质量现状调查	
	4.7.1 地表水环境质量现状调查与评价	
	4.7.2 环境空气质量现状调查与评价	125
	4.7.3 声环境质量现状调查与评价	
	4.7.4 生态环境现状调查与评价	
5	环境影响预测与评价	
	5.1 施工期环境影响评价	
	5.1.1 施工期大气环境影响	
	5.1.2 施工期水环境影响	
	5.1.3 施工期声环境影响	
	5.1.4 施工期固废影响	
	5.2 运营期环境影响评价	
	5.2.1 大气环境影响评价	
	5.2.2 地表水环境影响评价	
	5.2.3 声环境影响预测与评价	
	5.2.4 固体废物影响评价	
	5.2.5 生态环境影响评价	
	5.2.6 碳排放评价	186
6	环境风险评价	191
	6.1 风险源调查	191
	6.2 环境风险潜势判断	
	6.2.1 环境风险潜势划分依据	
	6.2.2 危险物质及工艺系统危险性(P)分级	194
	6.2.3 环境敏感程度(E)的划分	195
	6.2.4 建设项目环境风险潜势判断	198

	6.3 评价工作等级划分	199
	6.4 环境敏感目标概况	199
	6.5 环境风险识别	199
	6.5.1 物质危险性识别	199
	6.5.2 生产系统危险性识别	199
	6.5.3 环境风险识别结果	200
	6.5.4 危险物质向环境转移的途径识别	201
	6.5.5 环境风险类型及危害分析	201
	6.6 风险事故情形及源项分析	202
	6.6.1 风险事故情形设定	202
	6.6.2 事故源项分析	204
	6.7 环境风险预测与评价	207
	6.7.1 有毒有害物质在大气中的扩散预测与评价	207
	6.7.2 有毒有害物质在地表水、地下中的运移扩散预测与评价	208
	6.7.3 消防事故废水影响与评价	209
	6.8 环境风险管理与防范措施	212
	6.8.1 环境风险防范措施	212
	6.8.2 突发环境事件应急预案编制要求	215
	6.9 小结	216
	6.9.1 项目危险因素	216
	6.9.2 环境敏感性及事故环境影响	217
	6.9.3 环境风险防范措施和应急预案	217
	6.9.4 环境风险评价结论与建议	217
7	环境保护措施及其可行性论证	219
	7.1 大气污染防治措施及可行性	219
	7.1.1 废气收集措施	219
	7.1.2 锅炉烟气处理工艺可行性	220
	7.1.3 粉尘防治措施可行性	226
	7.1.4 小结	227
	7.2 水污染防治措施及其可行性	228
	7.2.1 雨、污水收集方式	228
	7.2.2 生活污水处理工艺可行性分析	229
	7.2.3 生产废水处理工艺可行性分析	229
	7.3 地下水污染防治措施及其可行性	232
	7.3.1 地下水环境污染防治原则	232
	7.3.2 厂区地下水污染防治措施	232
	7.4 土壤污染防治措施及其可行性	235
	7.5 噪声污染防治措施及其可行性	236
	7.6 固体废物暂存及处置可行性	237
	7.6.1 固体废物污染防治措施	237
	7.6.2 固体废物临时贮存场所污染防治措施	238
	7.6.3 一般固废收集和存放、转运、处置要求	240
	7.6.4 危险废物的申报要求	241
	7.6.5 危险废物的运输方式及要求	241

7.6.6 固体废物管理台账要求	242
8 环境影响经济损益分析	243
8.1 环保投资分析	243
8.1.1 环保防治措施投资	243
8.1.2 环保防治措施运行费用	244
8.1.3 环保监测费用	244
8.2 环境经济效益分析	244
8.2.1 经济效益分析	244
8.2.2 社会效益分析	245
8.2.3 环境效益分析	245
8.3 小结	245
9 环境管理与监测计划	246
9.1 项目污染物排放情况	246
9.1.1 总量控制	246
9.1.2 污染物排放清单	248
9.1.3 向社会公开的信息内容	254
9.2 环境管理	254
9.2.1 环境管理制度	254
9.2.2 环境管理计划	255
9.2.3 环境管理重点	255
9.3 环境监测计划	257
9.3.1 环境监测机构	257
9.3.2 环境监测计划	257
9.4 "三同时"制度及环保验收	258
9.4.1 "三同时"制度	258
9.4.2 环保设施竣工验收	259
9.5 排污许可申报	260
9.6 排污口规范化管理	260
9.6.1 排污口规范化要求的依据	261
9.6.2 排污口规范化的范围和时间	261
9.6.3 排污口规范化的内容	261
10 评价结论与建议	263
10.1 项目概况	263
10.2 环境质量现状评价结论	263
10.3 污染物排放情况	264
10.4 环保措施及环境影响分析结论	264
10.5产业政策符合性及选址合理性结论	265
10.6 环境管理与监测计划	266
10.7 环境影响经济损益分析结论	267
10.8 公众意见采纳情况	267
10.9 总结论	267
10.10 建议	267
附件一:环评委托书	错误! 未定义书签。
附件二:马铺工业集中区控制性规划调整批复	错误! 未定义书签。

附件三:	建设单位营业执照	吴!	未定义书签。	
附件四:	法定代表人身份证	吴!	未定义书签。	
附件五:	用地不动产权证	吴!	未定义书签。	
附件六:	项目备案证明错记	吴!	未定义书签。	
附件七:	环境质量现状监测报告	吴!	未定义书签。	
附件八:	燃料成分检测报告	吴!	未定义书签。	
附件九:	三明市沙县青州片区集中供热能源综合利用项目方案错记	吴!	未定义书签。	
附件十:	沙县青州化工产业集中区B片区控制性详细规划环境影响报告书审查意	见 钉	错误! 未定义书	签。
附件十一	-:园区企业用汽意向合作书 错记	吴!	未定义书签。	

1 概述

1.1 项目由来

三明市沙县马铺产业园、长桦集中区尚未实现集中供热,目前园区入驻的工业企业普遍采用自备小型锅炉供热,一方面锅炉效率较低,存在能源浪费和污染物的超标排放,存在运行安全隐患的同时供热保障能力不足,另外分散锅炉占用园区土地资源,对后续招商引资及企业入驻等园区发展存在制约。因此为满足沙县区马铺产业园、长桦集中区企业用热需求,降低园区粉尘、SO2和NOx的排放量,改善园区投资环境,促进沙县区的可持续绿色发展,由三明市沙县正通能源有限公司投资建设三明市沙县青州片区集中供热能源综合利用项目,实现园区集中供热能源综合利用。

三明市沙县正通能源有限公司成立于 2024 年 6 月 4 日,法定代表人为刘达元,是一家从事能源技术研发、技术服务、技术开发等业务的公司。三明市沙县正通能源有限公司作为福建省正元科技集团有限公司的全资子公司,正元科技集团始创于 1999 年 7 月,集团现已发展成为一家集工程建设、检维修服务、技术研究、节能服务、锅炉运维托管、合同能源管理、工程二次设计、设备制作、清洁能源集中供热、机电工程总承包、安全阀校验、专业水质化验、咨询销售于一体的综合性公司,能源集中供热技术成熟。

1.2 项目必要性

根据近期园区用汽情况调研,马铺产业园区的福建沙县青州日化有限公司、福建省沙县德利纸业、福建楚兴药业有限公司、福建铭峰高分子有限公司、福建民祥化工新材料有限公司和长桦集中区福建三明合力新材料科技有限公司、福建中闽大地纳米新材料有限公司、沙县盛春纸业有限公司、福建远润生物科技有限公司近期存在用汽需求,用汽压力在 0.4~1.26MPa,用汽温度在 140~185℃,蒸汽用汽量最大为 43t/h,平均为 30.3t/h。马铺产业园、长桦集中区尚未开展集中供热,园区供热方式主要以企业自建小锅炉为主,现有锅炉燃料以燃煤、木材边角料及生物质为主。

根据《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号)文件要求: "①各地要在 2023 年底前制定集中供热实施规划,到 2025 年底前,具备一定规模用热需求的工业园区、工业集中区、热负荷集中地区基本实现集中供热,并限期拆除集中供热管网覆盖地区内的燃煤、燃油等供热锅炉。②限期淘汰小锅炉。

每小时 2 蒸吨及以下燃煤锅炉在 2023 年底前全面淘汰;每小时 2-10 蒸吨(含)燃煤锅炉在 2024 年底前全面淘汰,其中大气环境监管重点地区在 2023 年底前淘汰。逐步淘汰县级及以上城市建成区内的生物质锅炉,优先淘汰由燃煤改烧生物质的锅炉。③全面实施超低排放改造。每小时 35(含)—65 蒸吨燃煤锅炉和位于县级及以上城市建成区内保留的燃煤、燃油、燃生物质锅炉,原则上 2025 年底前必须全面实现超低排放(烟尘、二氧化硫、氮氧化物排放浓度分别不高于 10、35、50毫克/立方米"。

根据《产业结构调整指导目录(2024年本)》:第三类淘汰类-二、落后产品(七)机械-66.每小时2蒸吨及以下生物质锅炉。

根据以上文件规定,马铺产业园、长桦集中区应限时逐步关停、改造园区内的小规模燃煤锅炉,并全面推进园区集中供热。为此,马铺产业园、长桦集中区建设集中供热项目(集中供热锅炉代替企业分散型自备锅炉)是必要的。项目建成后将取代马铺产业园、长桦集中区内企业小规模燃煤、燃生物质锅炉。

1.3 建设项目特点

- (1)项目位于福建省三明市沙县区青州马铺产业园内,建设单位购置沙县区 350427-20-A-38-1 地块,占地面积 24343m²,项目建筑面积 11500m²。
- (2)项目建设 2 台低压循环流化床锅炉,单台规模为 40t/h,采用煤炭和生物质作为燃料,年产 1.6MPa、230℃中低压蒸汽 34.56 万 t/a(按园区最大热负荷折算),同时配套建设 6.7 公里园区蒸汽管网(主管约 4.7 公里+支管 2 公里,总长度 6.7 公里),满足三明市沙县马铺产业园、长桦集中区工业企业生产用汽需求。
- (3)项目脱硫系统废水、锅炉废水收集全部回用于调湿灰,化水系统浓盐水收集全部回用于燃料输送系统冲洗,输送系统冲洗废水收集全部回用于厂区降尘及地面冲洗、绿化灌溉,剩余的锅炉冲洗废水、冷却系统定期排水和一体化净水设备废水收集至沉淀池处理后外排入市政污水管网,进入马铺工业污水处理厂处理,锅炉废气经低氮燃烧技术+SNCR-SCR 耦合脱硝+旋风-布袋除尘+石灰石-石膏湿法脱硫措施后由 45米高烟囱外排。
- (4)项目实施后将逐步关停马铺产业园和长桦集中区内 9 家企业在用的燃煤锅炉和分散小锅炉,实现区域集中供热,完善区域内工业配套设施,实现区域节能减排,降低对周边环境的影响。在采取严格废气治理设施,烟气执行闽环规〔2023〕1 号文件规定的超低排放限值前提下,项目建设可实现减排二氧化硫 53.7307t/a、减排氮氧化

物 68.8293t/a。

1.4 评价工作过程

本项目属于《国民经济行业分类》(GB/T4754-2017)D 电力、热力、燃气及水生产和供应业——44 电力、热力生产和供应业——4430 热力生产和供应。

根据《建设项目环境影响评价分类管理名录》(2021 年版),本项目属"四十一、电力、热力生产和供应业"中"91.热力生产和供应工程(包括建设单位自建自用的供热工程)"中的"燃煤、燃油锅炉总容量 65 吨/小时(45.5 兆瓦)以上的",应编制环境影响报告书。

为此,三明市沙县正通能源有限公司于 2025 年 2 月 27 日委托我公司开展该项目的环境影响评价工作(详见附件一)。我司接受委托后,立即进行现场踏勘、搜集分析有关资料,开展了环境监测等现场工作,建设单位于 2025 年 3 月 3 日在生态环境公示网进行第一次网络公示(https://gongshi.qsyhbgj.com/h5public-detail?id=442793), 2025 年 10 月 11 日 ~ 2025 年 10 月 23 日 于 生 态 环 境 公 示 网 (https://gongshi.qsyhbgj.com/h5public-detail?id=479376)及沿线村庄(后洋村、管前村)进行第二次公示,并于 2025 年 10 月 13 日与 2025 年 10 月 15 日在三明日报上进行两次公示。2025 年 10 月完成送审稿,供建设单位报生态环境主管部门评审。

本项目环境影响评价工作程序见图 1.4-1。

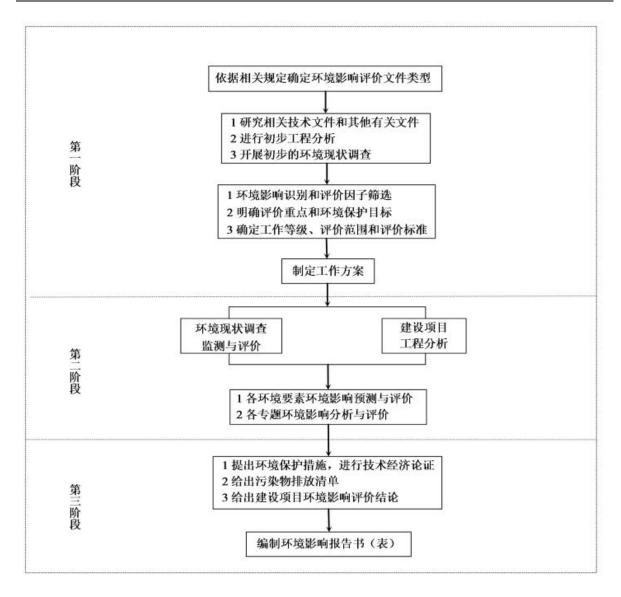


图 1.4-1 建设项目环境影响评价工作流程图

1.5 分析判定相关情况

1.5.1 与国家产业政策符合性分析

1.5.1.1 产业政策符合性分析

本项目属于区域集中供热工程,属于《产业结构调整指导目录(2024 年本)》中 鼓励类二十二条"城市基础设施"中第2款"城镇集中供热建设和改造工程",因此, 本项目建设符合国家及地方产业政策要求。

1.5.1.2 与《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1 号)的符合性

根据福建省生态环境厅、福建省市场监督管理局、福建省发展和改革委员会、福

建省工业和信息化厅、福建省财政厅联合印发《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号),本项目建设内容符合闽环规〔2023〕1号 文件相关要求,具体符合性见表 1.5.1-1。

表 1.5.1-1 本项目与闽环规(2023)1号文要求符合性一览表

	闽环规〔2023〕1号文具体要求	本项目情况	符合性
		根据三明市沙县区工业经	
	1.释放集中供热潜力。依托火电等大型工业企	济服务中心提供的附件	
(一)全面	业开展供热示范,加快热力管网建设,扩大集	九: 三明市沙县青州片区	
	中供热范围,最大程度释放热电联产、工业余	集中供热能源综合利用项	
	热等供热能力。各地要在 2023 年底前制定	目方案,本项目建设2台	
推进集中供	集中供热实施规划,到 2025 年底前,具备一	各 40t/h 低压循环流化床锅	符合
热,整合一	定规模用热需求的工业园区、工业集中区、热	炉,年产中低压蒸汽及配	
批分散锅炉	负荷集中地区基本实现集中供热,并限期拆除	套园区蒸汽管网, 为三明	
	集中供热管网覆盖地区内的燃煤、燃油等供热	市沙县马铺产业园、长桦	
	锅炉。	集中区工业企业提供集中	
		供热。	
		本项目建成后,将限期逐	
() too kts		步关停马铺产业园、长桦	
(二)加快	4.限期淘汰小锅炉。每小时2蒸吨及以下燃煤	集中区工业内9家企业现	
清洁能源替	锅炉在 2023 年底前全面淘汰;每小时 2-10 蒸	有的小锅炉,后期逐步提	符合
代,淘汰一	吨(含)燃煤锅炉在2024年底前全面淘汰。	升规模,逐步关停园区内	
批低效锅炉		其余不符合要求的小锅	
		炉。	
		本项目锅炉废气采取低氮	
	5.全面实施超低排放改造。每小时 35(含)-65	燃烧技术+SNCR+高温	
	蒸吨燃煤锅炉和位于县级及以上城市建成区	SCR 脱硝工艺+多管-布袋	
	内保留的燃煤、燃油、燃生物质锅炉,原则上	除尘+石灰石-石膏湿法脱	符合
	2025年底前必须全面实现超低排放(烟尘、二	硫治理措施,烟囱排口烟	111日
	氧化硫、氮氧化物排放浓度分别不高于 10、35、	尘、二氧化硫和氮氧化物	
	50 毫克/立方米)。	排放浓度执行超低排放限	
(三)积极		值。	
推动深度治	6.加强燃煤锅炉污染治理。城市建成区外保留	本项目锅炉废气采取低氮	
理,提升一	的燃煤锅炉应达到《锅炉大气污染物排放标	燃烧技术+SNCR+高温	
生,近月 批在用锅炉	准》(GB13271-2014)的特别排放限值要求,	SCR 脱硝工艺+多管-布袋	
加工用物从	鼓励按超低排放要求进一步提升污染治理水	除尘+石灰石-石膏湿法脱	
	平。采用旋风、水膜等低效除尘方式的,应开	硫治理措施,各项污染物	
	展静电除尘或袋式除尘等高效除尘设施升级	排放执行《锅炉大气污染	符合
	改造;对于未建设脱硫设施、脱硫设施运行不	物排放标准》	
	正常导致二氧化硫不能稳定达标排放,或因脱	(GB13271-2014)的特别	
	硫工艺不完善出现二氧化硫无组织排放的,应	排放限值要求,并从严执	
	开展治理设施建设或改造。积极开展氮氧化物	行《关于全面推进锅炉污	
	治理,推动燃烧技术改造,或者在末端采用	染整治促进清洁低碳转型	

SCR 等高效脱硝技术治理,必要时可采取低氮燃烧+末端脱硝。	的意见》(闽环规〔2023〕 1号)中颗粒物、二氧化硫 和氮氧化物超低排放限 值。	
7.加强燃油、燃生物质锅炉治理。燃生物质锅炉禁止掺烧煤炭、垃圾、工业固体废物等其他物料;配套高效规范的除尘设施,进行低氮燃烧改造,对改造后氮氧化物仍无法稳定达标的,鼓励采用 SCR 等高效脱硝技术开展末端治理。	本项目锅炉废气采取低氮 燃烧技术+SNCR+高温 SCR 脱硝工艺+多管-布袋 除尘+石灰石-石膏湿法脱 硫治理措施,符合要求。	符合

1.5.1.3 与《三明市人民政府关于印发三明市"十四五"节能减排综合工作实施方案的通知》(明政〔2023〕1 号)的符合性

根据《三明市人民政府关于印发三明市"十四五"节能减排综合工作实施方案的通知》(明政〔2023〕1号): (二)园区节能环保提升工程。.....完善化工、造纸、印染、制革等产业集聚和供热需求大的园区集中供热设施,逐步实现市区天然气管网全覆盖。

本项目属于三明市沙县马铺产业园、长桦集中区的集中供热设施,供热对象包含园区内的化工企业等,项目建设符合《三明市"十四五"节能减排综合工作实施方案》文件要求。

1.5.1.4 与《福建省大气污染防治条例》相符性分析

新建燃煤发电机组(含热电联产)应当采用烟气超低

排放等技术,现有燃煤发电机组(含热电联产)应当

在国家和本省规定期限内完成烟气超低排放改造,使

重点大气污染物排放浓度达到国家和本省要求。

3

2018年11月23日福建省人民代表大会常务委员会发布了《福建省大气污染防治条例》(〔十三届〕第十四号),该条例自2019年1月1日起实施。本项目与其相关符合性分析见表1.5.1-2。

序号	《福建省大气污染防治条例》具体要求	本项目情况	符合性
1	企业事业单位和其他生产经营者应当取得排污许可证而未取得的,不得排放大气污染物。实行排污许可管理的企业事业单位和其他生产经营者应当按照排污许可证的规定排放大气污染物。	本项目建成正式投产前将 依法按照排污许可证申请 与核发技术规范提交排污 许可申请,持证排污。	符合
2	县级以上地方人民政府应当统筹规划区域集中供热,在工业园区、开发区、港区等区域推进集中供热。	本项目属于三明市沙县马 铺产业园、长桦集中区的	符合

集中供热设施。

本项目严格按照环保准入

要求,锅炉烟气主要大气

污染物排放浓度执行超低

排放要求(烟尘≤10mg/m³、

符合

表 1.5.1-2 本项目与《福建省大气污染防治条例》符合性一览表

4	全省新建钢铁、火电、水泥、有色项目应当执行大气 污染物特别排放限值。重点控制区新建化工、石化及 燃煤锅炉项目应当执行大气污染物特别排放 限值。	$SO_2 \le 35 \text{mg/m}^3$, $NOx \le 50 \text{mg/m}^3$) .	符合
5	向大气排放二噁英等持久性有机污染物和汞、铅、铬、镉、类金属砷等污染物的企业事业单位和其他生产经营者以及废弃物焚烧设施的运营单位,应当采取减少大气污染物排放的技术和工艺,安装废气收集净化装置,实现达标排放。	本项目严格按照环保准入 要求,烟气治理措施考虑 了大气污染物联合协同除 汞,汞达到《锅炉大气污 染物排放标准》 (GB13271-2014)表3中 燃煤锅炉大气污染物特别 排放限值。	符合

1.5.2 与相关规划符合性分析

1.5.2.1 与《福建省"十四五"生态环境保护规划》符合性分析

根据《福建省"十四五"生态环境保护规划》: 电力提标改造和集中供热。实施 20 多个垃圾焚烧发电厂提标改造项目, 推进集中供热,工业园区优先发展热电联产, 开展 10 个热电联产项目。

本项目属于三明市沙县马铺产业园、长桦集中区的集中供热设施,为集中供热项目,项目建设符合《福建省"十四五"生态环境保护规划》规划要求。

1.5.2.2 与《沙县区马铺工业集中区控制性详细规划调整》符合性分析

《沙县区马铺工业集中区控制性详细规划调整》于 2024 年 11 月 22 日由三明市沙县区人民政府审查准予实施(沙政地〔2024〕123 号),见附件二。

(1) 片区规划位置及范围

沙县区马铺工业集中区规划范围: 东以马铺溪为界, 北至 205 国道, 西、南以自然山体为界, 规划总用地面积 133.94 公顷(2009.10 亩)。

沙县区马铺工业集中区范围见图 1.5.2-1。

(2) 产业定位

已入驻和已审批的企业予以保留,监控点污染物排放量和种类在现有基础上不再增加,确有必要新增的,应按要求从所在县域进行污染物排放量的等量或者倍量替代,允许在此基础上实施以补链延链为目的的新建、改扩建项目,不得新建其他无关联项目。

新入驻企业产业定位以"非金属矿物制品业、废弃资源综合利用业和环境治理业等产业"为主。

(3) 土地利用布局

规划对现状用地进行分析,同时结合现有企业、道路和山体地势,将集中区用地分块布局,规划主要布置三类工业用地、交通运输用地、公用设施用地、防护绿地和特殊用地。片区土地利用规划见图 1.5.2-2。

(4) 供热工程规划

园区供热工程规划远期热负荷约 55t/h,由规划区东南角热电联产引一根 DN300 的供热管道,向青州化工园片区(马铺及长桦工业园)的各企业输送热源,供热工程规划图见图 1.5.2-3。规划供热用地地块编号为 350427-20-A-38,用地面积 2.47 公顷。

本项目选址于沙县区 350427-20-A-38-1 地块,属于沙县区马铺工业集中区,根据地块产权可知,项目用地规划为供热用地,选址及用地类型与《沙县区马铺工业集中区控制性详细规划调整》一致。项目为园区集中供热项目,一期工程设计建设 2 台 40t/h 低压多燃料循环流化床锅炉,设计规模满足园区供热工程现状最大热负荷需求,建成后将为园区内的企业提供蒸汽供热服务,有助于逐步关停并减少园区小型锅炉产污,提高园区企业生产效率,与沙县区马铺工业集中区土地利用规划不相违背。

沙县区马铺工业集中区控制性详细规划调整

现状航拍图

图 1.5.2-1 沙县区马铺工业集中区范围图

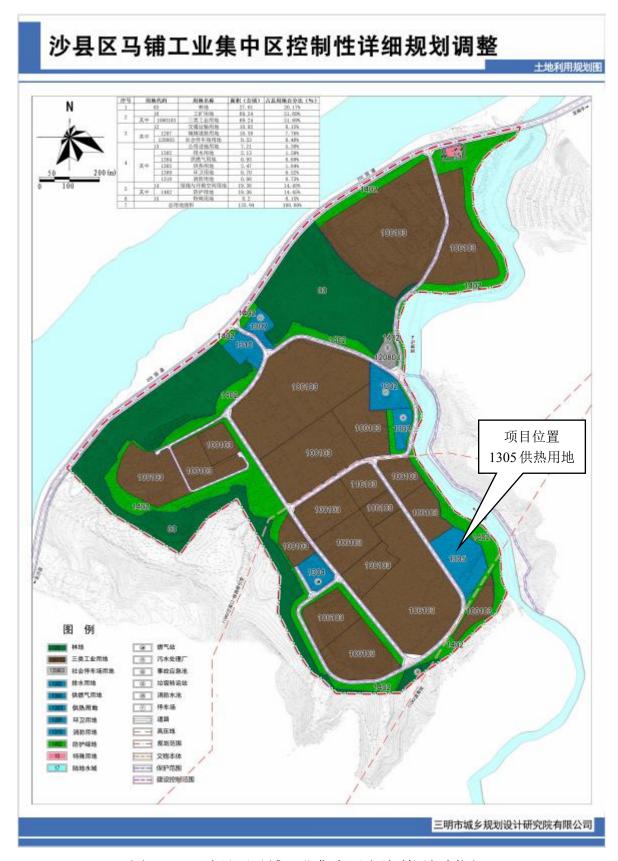


图 1.5.2-2 沙县区马铺工业集中区土地利用规划图

沙县区马铺工业集中区控制性详细规划调整 项目位置 --- 规划供热管线 - 供热设施 三明市城乡规划设计研究院有限公司

图 1.5.2-3 沙县区马铺工业集中区供热工程规划图

1.5.2.3 与《沙县青州化工产业集中区 B 片区控制详细规划环境影响报告书》及其审查 意见的符合性分析

本项目所在的马铺工业集中区也属于青州镇化工产业集中区 B 片区规划范围, 片区规划环评《沙县青州化工产业集中区 B 片区控制详细规划环境影响报告书》由三明市生态环境局于 2021 年 5 月予以审查通过(明环评(2021) 12 号), 根据报告书及其审查意见中相关结论:

- (1)严守环境质量底线,强化污染物排放总量管控。根据大气、水、土壤等污染防治攻坚战的相关要求,采取有效措施减少主要污染物和挥发性有机物、总磷、氨氮等特征污染物的排放。针对纳污水体的水环境容量制约因素,进一步提高污水收集效率,提升水资源利用率,推进中水回用。按照"源头控制、分区防治、污染监控、应急响应"的原则,防止污水渗漏对土壤和地下水环境造成污染。
- (2) 严格入园项目生态环境准入。落实报告书提出的生态环境准入要求,引进项目应达到国内同行业清洁生产先进水平。做好持久性有机污染物以及氮磷污染物排放的控制。

本项目属于三明市沙县马铺产业园、长桦集中区的集中供热设施,为集中供热项目,采用先进的生产工艺和设备、先进的环境保护技术,不属于高能耗、高水耗、清洁生产水平低的项目;项目脱硫系统废水、锅炉废水收集全部回用于调湿灰,化水系统浓盐水收集全部回用于燃料输送系统冲洗,输送系统冲洗废水收集全部回用于厂区降尘及地面冲洗、绿化灌溉,剩余的锅炉冲洗废水、冷却系统定期排水和一体化净水设备废水收集至沉淀池处理后外排入市政污水管网,进入马铺污水处理厂处理,外排废水水质简单,对外环境影响较小;项目废气污染物主要为烟尘、二氧化硫、氮氧化物、汞及其化合物和氨,经处理达标后排放,根据预测结果可知,项目废气对外环境影响较小;项目符合国家产业政策,符合集中区产业定位。因此,项目符合《沙县青州化工产业集中区 B 片区控制详细规划环境影响报告书》及其审查意见中相关结论。

1.5.2.4 与园区集中供热能源综合利用方案符合性分析

根据三明市沙县区工业经济服务中心管委会提供的《三明市沙县青州片区集中供热能源综合利用项目方案》(2025年9月),见附件九,青州片区园区集中供热项目由三明市沙县正通能源有限公司投资,一期工程在沙县区马铺工业集中区规划位置建设2台40t/h低压多燃料循环流化床锅炉,采用煤炭和生物质作为混合燃料,同步建设全套辅助

生产设施与环保系统,并配套建设 6.7 公里园区蒸汽管网,一期工程建成后年供 1.6MPa、230℃蒸汽 34.56 万 t,全面满足马铺工业集中区及长桦工业集中区企业的生产用汽需求。本项目建设内容与园区供热规划一致。

1.5.3 选址合理性分析

本项目选址于沙县区青州马铺工业集中区,位于沙县区 350427-20-A-38-1 地块,项目地理位置图见图 1.5.3-1,本项目北侧、西侧和南侧均为空置闲地,用地类型均规划为三类工业用地,东侧隔马浦溪为自然山体,周边无环境敏感目标。项目位于园区东南角,距离各用热企业较近,有利于供热管网铺设,与周边环境相容性好。

图 1.5.3-1 项目位置及周边环境分布图

1.5.4"三线一单"相关情况分析判定

(1) 生态保护红线

本项目位于沙县区青州马铺工业集中区 350427-20-A-38-1 地块,规划为供热用地,选址不涉及自然保护区、风景名胜区、饮用水源保护区、重要湿地、重要自然与人文景观、文物古迹及其他需要特别保护的区域,满足生态保护红线控制要求。

(2) 环境质量底线

本项目所在区域环境质量现状监测结果表明,环境空气满足《环境空气质量标准》(G83095-2012)中的二级标准限值要求、《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 参考限值;地表水水质满足《地表水环境质量标准》(GB3838-2002)中 III 类标准限值要求;声环境满足《声环境质量标准》(GB3096-2008)中 3 类标准限值要求;根据本次环评预测分析,本项目运营后对区域内环境影响较小,环境质量基本可以保持现有水平,不会对区域环境质量底线造成冲击。

(3) 资源利用上线

本项目生产过程中所用的资源主要为水资源、电能和煤、生物质燃料,项目所在地水资源丰富,用水取自沙溪;用电来源于园区供电;本项目为集中供热类项目,项目建成后将替代园区现有分散锅炉的燃料使用,分散供热的小锅炉有效率低,浪费能源问题,一般分散的小型锅炉的热效率只有50%到60%,而本项目集中供热锅炉的热效率可达90%及以上,可有效减少园区企业燃料使用,项目符合资源利用上限要求。

(4) 生态环境准入清单

根据福建省生态环境分区管控数据应用平台选址评估可知,项目选址于沙县青州 化工产业集中区 B 片区 ZH35040520003 重点管控单元,研判结果见图 1.5.4-1。根据《三 明市生态环境局关于发布三明市 2023 年生态环境分区管控动态更新成果的通知》(明 环规〔2024〕2 号)中附件 3 生态环境准入要求,项目建设内容与三明市总体准入要求 的符合性分析见表 1.5.4-1,与片区管控要求的符合性分析见表 1.5.4-2。

表 1.5.4-1 项目与三明市总体准入要求符合性分析一览表

适用范围	维度	准入要求	本项目情况	符合性
全市	空间 布 约束	3. 2024年底前,全市范围原则上不再新增目备燃煤机组,支持目备燃煤机组实施清洁能源替代, 全市范围不再新上每小时 35 蒸吨以下燃煤锅炉,以及每小时 10 蒸吨及以下燃生物质和其他适用 高污染燃料的锅炉。集中供热管网覆盖范围内禁止新建、扩建分散燃煤、燃油等供热锅炉。 4. 继续推进城市建成区现有印染、原料药制造、化工等污染较重企业有序搬迁改造或依法关闭。 5. 以印染、皮革、农药、医药、涂料等行业为重点,推进有毒有害化学物质替代。化工园区新 建项目实施"禁限控"化学物质管控措施,项目在开展环境影响评价时应严格落实相关要求,严格	11.本项目个属于氟化工、制单、 钢铁、水泥、平板玻璃、有色金 属治炼、化工、植物制浆、印染 及原料药制造等园区禁止或严	符合
	污染 排管	3.东牙溪水库、金湖汇水区域城镇污水处理设施全面达到一级 A 排放标准。氟化工、印染、电镀等行业应执行水污染物特别排放限值。 4.在三明市铅锌矿产资源开发活动集中区域(尤溪县、大田县)实行重点污染物特别排放限值。新、改扩建涉重金属重点行业建设项目必须遵循重点重金属污染物排放"减量置换"或"等量置换"的原则,原则上应在本区域内有明确具体的重金属污染物排放总量来源。 5.加快推进省级以上工业园区"污水零直排区"建设和重点行业企业及重点产业园区明管化改造。	泥、有色金属以及化工项目。 3.本项目不属于城镇污水处理设施项目,为集中供热项目,项目 生活污水经预处理后排入马铺 污水处理厂进一步处理,排放执 行污水处理厂进水水质要求。	符合

表 1.5.4-2 项目与沙县区青州化工产业集中区 B 区生态环境管控单元要求符合性分析一览表

环境管控 单元编码	环境管控 单元名称	管控单 元类别		管控单元	本项目情况	符合性	
ZH3504052 0003	沙县区青 州化工产 业集中区 B区	重点管控单元		1.集中区内部不规划设置集中的居住、商贸用地。 2.禁止新建废水排放量大、污染物难以生化降解的项目。	1.本项目位于沙县区青州马铺工业集中区 350427-20-A-38-1 地块,用地类型规划为供热用地,与本项目集中供热用途匹配。 2.本项目脱硫系统废水、锅炉废水收集全部回用于调湿灰,化水系统浓油、输送系统冲洗废水收集全部回用于燃料输送系统冲洗所下下上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上,以上	符合	
				污染物 排放管 控	1. 新建、改建、扩建项目,新增污染物排放按照福建省排污权有偿使用和交易相关文件执行,新建涉 VOCs 项目,VOCs 排放按照福建省相关政策要求落实。 2. 完善建设污水收集管网,确保园区内所有工业废水、生活污水纳入污水处理厂处理并达标排放。 3. 污水处理厂达到一级 A 排放标准。	相关文件要求取得排污权交易。 2.本项目脱硫系统废水、锅炉废水和化	符合

进入马铺污水处理厂处理;职工生活污水经化粪池预处理后排入马铺污水处理厂进一步处理,排放执行污水处理厂进一步处理,排放执行污水处理厂进水水质要求。 1. 切实加强化工等重污染行业、企业污染及应急防控,所有化工企业,要配套建设事故应急池和雨水总排口切换阀,配备应急教援物资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦2. 项目厂区地面按要求进行分区防截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防油、圆子和利消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。构造设置为重点防渗区,项目环境风险、外、氦水罐区风周设置围堰,储油罐、外、氦水罐区周设置围堰,储油罐、构、氦、应采取有效措施防止园区建设对区域地下水、土壤造成污染。构、调和储储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。施,厂区雨水管网排口建设应急阀门,厂区配重单放应急池等消防装置,能下、进行政境风险、排查整治环境交全隐患,依法公开新污染物间上,厂区配重单放应急池等消防装置,能下、时、工事放、大、大、大、大、大、大、大、大、大、大、大、大、大、大、大、大、大、大、大				
处理厂进一步处理,排放执行污水处理厂进水水质要求。 1. 切实加强化工等重污染行业、企业污染及应急防控,所有化工企业,要配套建设事故应急池和雨水总排口切换阀,配备应急救援物资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防油、海物和消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。构、复为重点防渗区;项目环境风险水、复大发型,有的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。构造,厂区雨水管网排口建设应急阀门,厂区配置事故应急池等消防装置,能够过度,加工使用和进出口。严格涉新污染物建设项目准入管理。构造,厂区配置事故应急池等消防装置,能够,工度、加工使用和进出口。严格涉新污染物建设项目准入管理。构造,厂区配置事故应急池等消防装置,能够,工度、大多数。,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,			进入马铺污水处理厂处理; 职工生活	
理厂进水水质要求。 1. 切实加强化工等重污染行业、企业污染及应急防控,所有化工企业,要配套建设事故应急池和雨水总排口切换阀,配备应急救援物资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦2. 项目厂区地面按要求进行分区防截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防油泄漏物和消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。推入厂区雨水管网排口建设应急阀门,厂区配置事故应急池等消防装置,能防止年境风险,排查整治环境安全隐患,依法公开新污染物信息,深取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、液失、扬散。			污水经化粪池预处理后排入马铺污水	
1. 切实加强化工等重污染行业、企业污染及应急防控,所有化工企业,要配套建设事故应急池和雨水总排口切换阀,配备应急救援物资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦 2. 项目厂区地面按要求进行分区防截、降污和导流,受园区排污影响的周边水系应建设应急闸门,防止泄漏物和消防水等排入外环境。 环境风			处理厂进一步处理, 排放执行污水处	
业,要配套建设事故应急池和雨水总排口切换阀,配备应急救援物资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦2. 项目厂区地面按要求进行分区防截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防止泄漏物和消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关,厂区配置事故应急池等消防装置,能防止压环境风险,排查整治环境安全隐患,依法公开新污染物信息,采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有。 1. 本项目不属于化工类。 1. 本项目不属于化工类。 2. 项目厂区地面按要求进行分区防			理厂进水水质要求。	
 资,安装特征污染物在线监控设施。 2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦 截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防止泄漏物和消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污)口及其周边环境定期开展环境监测,评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、流失、扬散。 1. 本项目不属于化工类。 2. 项目厂区地面按要求进行分区防流、第、量工厂区域区域区域区域区域区域区域区域区域区域区域区域区域区域区域区域区域区域区域		1. 切实加强化工等重污染行业、企业污染及应急防控,所有化工企		
2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦2. 项目厂区地面按要求进行分区防截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防		业,要配套建设事故应急池和雨水总排口切换阀,配备应急救援物	J	
截、降污和导流;受园区排污影响的周边水系应建设应急闸门,防止泄漏物和消防水等排入外环境。 环境风		资,安装特征污染物在线监控设施。	1. 本项目不属于化工类。	
正泄漏物和消防水等排入外环境。 3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污)口及其周边环境定期开展环境监测,证事故状态下泄漏物或消防水排入评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、流失、扬散。		2. 建设企业、园区和周边水系三级环境风险防控工程,确保有效拦	2. 项目厂区地面按要求进行分区防	
3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污)口及其周边环境定期开展环境监测,评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,深取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、流失、扬散。		截、降污和导流; 受园区排污影响的周边水系应建设应急闸门, 防	渗, 氨水罐区、储油罐、废水治理设	
及防控 4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污)口及其周边环境定期开展环境监测,评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,深取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、流失、扬散。 3. 本项目不涉及重点管控新污染物。 3. 本项目不涉及重点管控新污染物。		止泄漏物和消防水等排入外环境。	施设置为重点防渗区;项目环境风险	
4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物机油桶储存时做好防渗漏、防流失措的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污)口及其周边环境定期开展环境监测,评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,深取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有害物质渗漏、流失、扬散。	TT LÀ E	3. 应采取有效措施防止园区建设对区域地下水、土壤造成污染。	小, 氨水罐区四周设置围堰, 储油罐、	
的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。 施,)区雨水管网排口建设应急阀门,排放重点管控新污染物的企事业单位和其他生产经营者应按照相关		4. 按照重点管控新污染物清单要求,禁止、限制重点管控新污染物	机油桶储存时做好防渗漏、防流失措	符合
法律法规要求,对排放(污)口及其周边环境定期开展环境监测, 评估环境风险,排查整治环境安全隐患,依法公开新污染物信息, 用边马铺溪水体。 采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有 害物质排放,建立土壤污染隐患排查制度,防止有毒有害物质渗漏、 流失、扬散。	险防拴	的生产、加工使用和进出口。严格涉新污染物建设项目准入管理。	施,厂区雨水管网排口建设应急阀门,	
评估环境风险,排查整治环境安全隐患,依法公开新污染物信息, 采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有 害物质排放,建立土壤污染隐患排查制度,防止有毒有害物质渗漏、 流失、扬散。		排放重点管控新污染物的企事业单位和其他生产经营者应按照相关	厂区配置事故应急池等消防装置,能	
采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有 害物质排放,建立土壤污染隐患排查制度,防止有毒有害物质渗漏、 流失、扬散。		法律法规要求,对排放(污)口及其周边环境定期开展环境监测,	防止事故状态下泄漏物或消防水排入	
害物质排放,建立土壤污染隐患排查制度,防止有毒有害物质渗漏、 流失、扬散。		评估环境风险,排查整治环境安全隐患,依法公开新污染物信息,	周边马铺溪水体。	
流失、扬散。		采取措施防范环境风险。土壤污染重点监管单位应严格控制有毒有	3. 本项目不涉及重点管控新污染物。	
		 害物质排放,建立土壤污染隐患排查制度,防止有毒有害物质渗漏、		
本项目为集中供热类项目,项目建成				
			本项目为集中供热类项目,项目建成	
资源开 资源开 图 	资源开		后将替代园区现有分散锅炉的燃料使	
根极推进集中供热工程建设进度,对于确因生产工艺需要实行自主用,分散供热的小锅炉有效率低,浪 符	发效率		用,分散供热的小锅炉有效率低,浪	符合
要求 供热的企业,应以推广使用清洁能源为主,或采用生物质燃料。	要求	快热的企业,应以推广使用消洁能源为土,	费能源问题,符合资源开发利用效率	
要求。			要求。	

根据表 1.5.4-1 和表 1.5.4-2 分析可知,本项目建设可符合《三明市生态环境局关于发布三明市 2023 年生态环境分区管控动态更新成果的通知》(明环规〔2024〕2 号)准入要求。

图 1.5.4-1 福建省生态环境分区管控数据应用平台研判截图

1.5.5 与三明沙县机场净空区要求符合性分析

福建省三明沙县机场位于沙县城区东北侧,于本项目的西南侧约距 12.83 公里处。

根据《三明市沙县区人民政府办公室关于印发三明沙县机场净空管理办法的通知》 (沙政办规〔2024〕4号),沙县机场净空保护区是以机场基准点为圆心、水平半径55 公里的空间区域,主要涵盖以下区域:沙县区的凤岗街道、虬江街道、青州镇、高砂镇、 富口镇。因此,本项目位于三明市沙县机场净空区内。

《三明市沙县区人民政府办公室关于印发三明沙县机场净空管理办法的通知》(沙政办规〔2024〕4号)明文规定禁止在三明沙县机场净空保护区域内从事以下活动:

- (一)修建可能在空中排放大量烟雾、粉尘、火焰、废气而影响飞行安全的建筑物或者设施:
 - (二)修建靶场、强烈爆炸物仓库等影响飞行安全的建筑物、构筑物或者设施;
 - (三)修建不符合机场净空要求的建筑物、构筑物或者设施;
- (四)设置影响机场目视助航使用或者民用航空器驾驶员视线的灯光、激光、标志、物体:
 - (五)种植影响飞行安全或者影响机场助航设施使用的植物:
- (六)放飞影响飞行安全的鸟类动物以及升放无人驾驶的自由气球、系留气球和其他物体:
 - (七)修建影响机场电磁环境的建筑物、构筑物或者设施;
 - (八)设置易吸引鸟类及其他动物的露天垃圾场、屠宰场、养殖场等场所:
 - (九) 焚烧产生大量烟雾的农作物秸秆、垃圾等物质,或者燃放烟花、焰火;
 - (十) 其他可能影响飞行安全的情形或者活动。

本项目属于片区集中供热项目,不涉及修建不符合机场净空要求的建筑物、种植树木,或者从事挖掘、堆积物体等影响民用机场运营安全的活动。项目排放的锅炉烟气污染物主要为颗粒物、二氧化硫、氮氧化物、汞及其化合物和氨,通过锅炉烟囱有组织排放,项目排气筒参数见下表 1.5.5-1。

表 1.5.5-1 项目大气污染源情况一览表

			废气量		排气筒参数	
排口名称	<u>处理措施</u>	主要污染物	及(里 (m³/h)	排气筒高度 (m)	直径(m)	温度(℃)
锅炉烟囱	低氮燃烧+SNCR+SCR 脱硝+多管-布袋除尘+ 石灰石-石膏湿法脱硫		202000	45	2.2	60

根据上表数据以及烟气热释放率计算公式,本项目烟气热释放率计算见下表 1.5.5-2。

表 1.5.5-2 烟气热释放率计算一览表

· · · · · · · · · · · · · · · · · · ·	- /- 4////////	1171 7014	
参数描述	単位	代号	锅炉烟囱
大气压力	hPa	Pa	1013.25
实际排烟率	m^3/s	Qv	74.20
烟气出口温度	K	Ts	333.15
环境大气温度 (取沙县多年平均温度 20.32℃)	K	Ta	293.47
烟囱出口温度与环境温度差	K	ΔТ	39.68
烟气热释放率 0.35PaQv△T/Ts	kJ/s	Qh	3134.15

根据上表数据以及烟气抬升高度计算公式,本项目烟气抬升高度计算见表 1.5.5-3。

表 1.5.5-3 烟气抬升高度计算一览表

参数描述	单位	代号	锅炉烟囱
排气筒出口处烟气排出速度	m/s	Vs	16.24
排气筒直径	m	D	2.2
排气筒出口处平均风速	m/s	U	1.9
烟气抬升高度 2(1.5VsD+0.01Qh)/U	m	∆Н	89.4
排气筒实际高度	m	Hs	45
排气筒有效高度(实际+抬升)	m	Ну	134.4

本项目锅炉烟囱有效高度为 134.4m,项目海拔高程约 99m,烟囱烟气抬升后的等效高程为 233.4m,其高度小于区域净空允许海拔高度 328 米,不会影响到三明沙县机场飞机飞行安全。

1.6 关注的主要环境问题及环境影响

本项目属于集中供热工程,根据工程特点以及项目所处区域现状,本次评价所关注的主要环境问题如下。

(1)项目锅炉排放燃煤、燃生物质烟气对区域环境空气的影响,烟气处理技术可行性。

- (2)项目运行时产生的脱硫废水、锅炉排污水、化水系统废水以及输料系统冲洗废水回用可行性及生产废水处理技术可行性;生活污水经厂区化粪池初步处理后纳入马铺污水处理厂排放对区域水环境的影响。
 - (3) 项目运行时生产噪声对区域环境的影响。
- (4)项目运行产生的固体废物处理及综合利用的可行性,产生的固体废弃物对区域环境的影响。

1.7 环境影响评价主要结论

三明市沙县青州片区集中供热能源综合利用项目位于福建省三明市沙县区青州马铺产业园内,购置沙县区 350427-20-A-38-1 地块,一期工程建设 2 台低压循环流化床锅炉,单台规模为 40t/h,采用煤炭和生物质作为燃料,年产中低压蒸汽(1.6MPa,230℃)34.56 万 t/a,同时配套建设 6.7 公里园区蒸汽管网,项目建成后为园区提供稳定可靠的热力供应。项目建设符合国家产业政策要求;工程选址经分析基本符合沙县国土空间总体规划、环境功能区划要求,项目采用的污染防治措施技术可靠、经济可行,经处理后各污染物可全部达标排放;项目建成后可实现区域污染物减排。经各专题环境影响分析,本项目排放的污染物对大气环境、声环境、水环境及生态环境等的影响不会改变所在区域环境功能区的质量,采取的环境风险防范措施和应急预案可以满足风险事故的防范和处理要求,环境风险可以接受。

因此,在严格执行环保"三同时"制度、认真落实污染防治和生态保护措施、环境风险防范措施、环境管理等各项措施的前提下,从环境保护的角度考虑,项目建设可行。

2 总则

2.1 编制依据

2.1.1 法律、法规及规章

- (1) 《中华人民共和国环境保护法》,2014年4月24日修订;
- (2) 《中华人民共和国环境影响评价法》,2018年12月29日修订;
- (3)《中华人民共和国大气污染防治法》,2018年10月26日修订;
- (4) 《中华人民共和国水污染防治法》,2017年6月27日修订;
- (5) 《中华人民共和国噪声污染防治法》,2022年6月5日施行;
- (6)《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订;
- (7) 《中华人民共和国清洁生产促进法》,2012年7月1日;
- (8) 《建设项目环境保护管理条例》,国务院682号令,2017年10月1日;
- (9) 《环境影响评价公众参与暂行办法》,2019年1月1日;
- (10) 《建设项目环境影响评价分类管理名录》,2021年1月1日;
- (11) 《产业结构调整指导目录(2024年本)》:
- (12) 《国家危险废物名录》(2025年版), 2024年11月8日;
- (13) 《危险化学品安全管理条例》(2013年12月7日修正、施行);
- (14)《关于进一步加强环境影响评价管理防范环境风险的通知》,环境保护部环发(2012)77号,2012年7月3日;
- (15)《国务院办公厅关于印发突发事件应急预案管理办法的通知》,国办函〔2014〕 119号,2014年12月29日;
 - (16)《福建省生态环境保护条例》(2022年5月1日施行);
 - (17) 《福建省水污染防治条例》(2021年11月1日施行);
 - (18)《福建省大气污染防治条例》(2019年1月1日施行);
 - (19) 《福建省土壤污染防治条例》(2022年9月1日施行);
 - (20)《福建省固体废物污染环境防治条例》(2024年6月1日施行);
 - (21)《碳排放权交易管理暂行条例》(2024年5月1日施行);
 - (21) 《福建省安全生产条例》(2016年12月2日修正,2017年3月1日施行)。

2.1.2 技术规范

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2) 《环境影响评价技术导则 大气环境》(HJ2.2-2018);
- (3) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018);
- (4) 《环境影响评价技术导则 声环境》(HJ2.4-2021):
- (5) 《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018);
- (6) 《环境影响评价技术导则 地下水环境》(HJ610-2016);
- (7) 《建设项目危险废物环境影响评价指南》,2017年10月1日;
- (8) 《建设项目环境风险评价技术导则》(HJ/T169-2018):
- (9)《环境保护公众参与办法》(生态环境部令第4号);
- (10) 《危险化学品重大危险源辨识》(GB18218-2018):
- (11) 《企业事业单位环境信息公开办法》,环保部令第31号,2015年1月1日;
- (12)《国家重点监控企业自行监测及信息公开办法(试行)》,2013年7月30日;
- (13)《国家重点监控企业污染源监督性监测及信息公开办法(试行)》,2013年7月30日:
 - (14) 《排污许可证申请与核发技术规范 总则》(HJ942-2018):
 - (15) 《排污许可证申请与核发技术规范 锅炉》(HJ953-2018):
 - (16) 《排污单位自行监测技术指南火力发电及锅炉》(HJ820-2017);
 - (17) 《燃煤电厂超低排放烟气治理工程技术规范》(HJ 2053-2018);
 - (18) 《工业锅炉烟气治理工程技术规范》(HJ 462-2021);
 - (19) 《工业企业设计卫生标准》(GBZ1-2010)。

2.1.3 有关的环境政策、规划及文件

- (1)《国务院关于印发水污染防治行动计划的通知》(国发〔2015〕17号);
- (2)《国务院关于印发大气污染防治行动计划的通知》,国发〔2013〕37 号,2013年9月10日:
- (3) 关于印发《建设项目环境影响评价信息公开机制方案》的通知(环发〔2015〕 162 号);
 - (4)《建设项目危险废物环境影响评价指南》(公告2017年第43号);

- (5) 《福建省水(环境)功能区划》(闽政文〔2004〕3号);
- (6)《福建省人民政府关于印发大气污染防治行动计划实施细则的通知》(福建省人民政府,闽政〔2014〕1号,2014年1月5日);
- (7)《福建省人民政府关于印发水污染防治行动计划工作方案的通知》(闽政〔2015〕26号);
- (8)《福建省人民政府办公厅印发《关于深化闽江流域生态环境综合治理工作措施》的通知》(闽政〔2024〕12号);
- (9)《沙县区马铺工业集中区控制性详细规划调整》(2024年)及批复(沙政地(2024)123号);
- (10)《沙县青州化工产业集中区 B 片区控制详细规划环境影响报告书》(2021年)及审核意见(明环评(2021)12号);
 - (11) 《沙县国土空间总体规划(2020-2035年)》;
 - (12) 《粉煤灰综合利用管理办法》(国家发改委令第19号)。

2.1.4 其他相关依据

- (1) 环评委托书, 2025年2月:
- (2) 项目投资备案证明(闽发改备[2024]G100262号);
- (3) 三明市沙县正通能源有限公司营业执照;
- (4) 用地不动产权证(0003518号):
- (5) 环境现状监测报告(报告编号: CRA-HT25010):
- (6) 煤炭燃料成分分析报告;
- (7) 三明市沙县青州片区集中供热能源综合利用项目方案。

2.2 环境影响因素识别和评价因子筛选

2.2.1 环境影响因素识别

(1) 施工期

项目施工期短,施工结束后,影响随之消失,因此,施工期间对环境的影响属短期、部分可逆、局域性影响,影响范围和程度均为局部性。

(2) 运营期

项目对周边环境影响主要体现在运营期,结合区域环境现状和规划功能,项目运营期主要的环境影响为废气、废水污染影响,其次是固废和噪声对环境的不良影响。

项目环境影响因素识别见表 2.2.1-1。

表 2.2.1-1 项目运营期环境影响因素识别一览表

时段	环境要素	影响因子	工程内容及表征	影响程度
		扬尘	运输车辆带起扬尘	-1
	环境空气	汽车尾气	施工机械和运输车辆排放尾气	-1
		异味	厂房装修废气	-1
施工期	水环境	COD、氨氮、SS、石油类	施工人员生活污水、施工废水	-1
	声环境	噪声	施工机械噪声、运输车辆噪声	-1
	固体废物	固体废物	施工人员生活垃圾、施工产生	-1
	四件/及1///	四件及初	固废	-1
	 环境空气	 颗粒物、SO2、NOx、汞、氨等	锅炉烟气、储运系统粉尘、氨	-2
	7176L (AND THE REPORT OF THE PARTY OF	储罐废气	-2
		pH、COD、BOD5、氨氮、SS、		
	 水环境	氟化物、硫化物、总铅、总汞、	锅炉运行生产废水及配套设施	-2
运费 加		总砷、总镉、石油类、挥发酚、	排污水、职工生活污水	-2
运营期		总磷		
	声环境	噪声	生产设备运行噪声	-1
	田休座伽	锅炉灰渣、除尘废料、废催化剂、	生产过程产生一般固废和危险	1
	固体废物	废油等	废物、职工生活垃圾	-1
	环境风险	柴油罐、氨水罐、机油桶	机油、柴油、氨水泄漏	-1
备注:表	中 1一轻度影	河; 2一中等影响; 3一重大影响。	负号(-)为不利影响。	

2.2.2 评价因子筛选

依据项目排污特点及周边区域环境特征的分析,确定各环境要素的评价因子,详见表 2.2.2-1。

表 2.2.2-1 项目评价因子筛选结果一览表

环境要素	项目	评价因子		
	污染因子	pH、COD、氨氮、BOD5、SS、硫化物、氟化物、总铅、总汞、总砷、		
地表水	100/10	总镉、石油类、挥发酚、总磷		
环境	现状评价因子	水温、pH、COD、氨氮、BOD₅、SS		
小児	影响分析内容	分析废水排放对收纳污水处理厂的影响,污水处理厂处理能力、处理工		
	彩响分析內谷	艺、设计进水水质以及处理后的废水稳定达标排放情况		
	污染因子	颗粒物、SO ₂ 、NOx、氨、汞		
大气环境	现状评价因子	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、O ₃ 、TSP、氨、汞		
	影响预测因子	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、氨、汞		
	污染因子	等效连续 A 声级		
声环境	现状评价因子	等效连续 A 声级		
影响预测因子		等效连续 A 声级		
田休広畑	污染因子	一般工业固废、危险废物、生活垃圾		
固体废物	影响分析因子	一般工业固废、危险废物、生活垃圾		
环境风险	影响分析因子	氨水、柴油及机油泄漏,以及火灾、爆炸等引发伴生/次生污染物排放		

2.3 环境功能区划和评价标准

2.3.1 环境功能区划及环境质量标准

根据"三明市人民政府关于同意《三明市地表水环境和环境空气质量功能类别区划方案及达标工作方案》的批复"(明政〔2000〕文 32 号)、《三明市地表水环境功能区类别划分方案及编制说明》及《沙县城市总体规划(2010~2030 年)》可知,项目所在区域环境空气、水环境、声环境质量功能区划情况如下:

(1) 环境空气

项目所在区域环境空气功能为二类功能区(见图 2.3.1-1),区域环境空气质量执行《环境空气质量标准》(GB3095-2012)二级标准;氨参照执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 参考限值,详见表 2.3.1-1。

序号	污染物项目	标准值		单位	执行标准
		年平均	60	$\mu g/m^3$	
1	SO_2	24 小时平均	150	μg/m³	
		1 小时平均	500	μg/m³	
		年平均	40	μg/m³	
2	NO ₂	24 小时平均	80	μg/m³	
		1 小时平均	200	$\mu g/m^3$	
3	PM ₁₀	年平均	70	μg/m³	
3	PIVI10	24 小时平均	150	μg/m³	【环境空气质量标准》(GB3
1	4 PM _{2.5}	年平均	35	μg/m³	(GB3) (
4		24 小时平均	75	μg/m³	093-2012/ 二级你性]
5	5 O ₃	日最大8小时平均	160	μg/m³	
3		1 小时平均	200	μg/m³	
6	СО	24 小时平均	4	mg/m³	
0	CO	1 小时平均	10	mg/m³	
7	TSP	年平均	200	μg/m³	
/	131	24 小时平均	300	μg/m³	
8	汞	年平均	50	$\mu g/m^3$	
					《环境影响评价技术导则
8	氨	1 小时平均	200	$\mu g/m^3$	大气环境》(HJ2.2-2018)附
					录D参考限值

表 2.3.1-1 区域环境空气质量标准限值

(2) 地表水

本项目周边最近的水体为沙溪,水环境功能类别为III类(见图 2.3.1-2),水质执行《地表水环境质量标准》(GB3838-2002)中III类标准,详见表 2.3.1-2。

表 2.3.1-2 区域地表水环境质量标准限值

序号	污染物项目	标准值	单位	执行标准
1	pН	6~9	无量纲	
2	COD	€20	mg/L	
3	BOD_5	≪4	mg/L	
4	氨氮	≤1.0	mg/L	
5	总磷	≤0.2	mg/L	
6	总氮	≤1.0	mg/L	
7	汞	≤0.0001	mg/L	《地表水环境质量标准》 (GB3838-2002)中III类标
8	铅	≤0.05	mg/L	(GB3838-2002) 中田关桥 准
9	砷	≤0.05	mg/L	1 <u>#</u> .
10	镉	≤0.005	mg/L	
11	硫化物	≤0.2	mg/L	
12	氟化物	≤1.0	mg/L	
13	石油类	€0.05	mg/L	
14	挥发酚	≤0.005	mg/L	

(3) 声环境

项目位于沙县青州化工产业集中区 B 片区,所在区域划为 3 类声环境功能区(见图 2.3.1-3),区域环境噪声执行《声环境质量标准》(GB3096-2008)3 类标准,详见表 2.3.1-3。

表 2.3.1-3 区域声环境质量标准限值

时段 声环境功能区类别	昼间	夜间
3 类	65dB (A)	55dB (A)

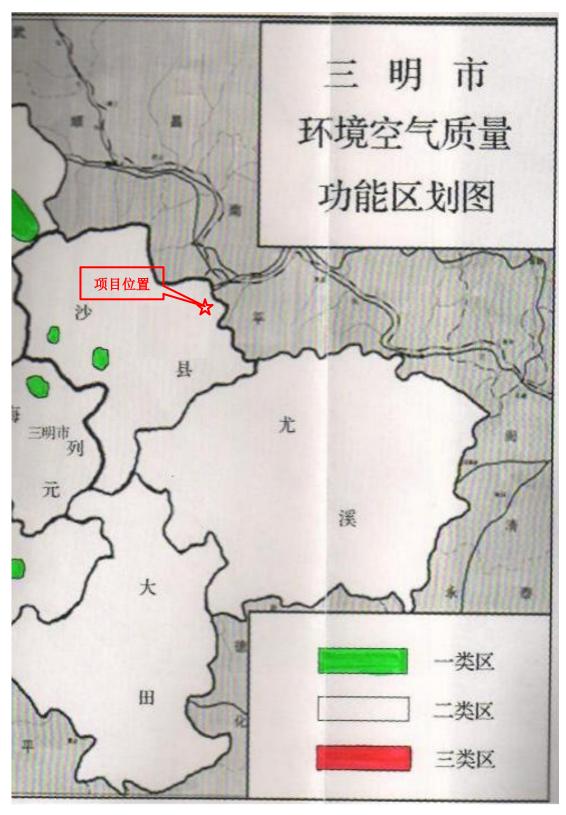


图 2.3.1-1 三明市空气功能区划图

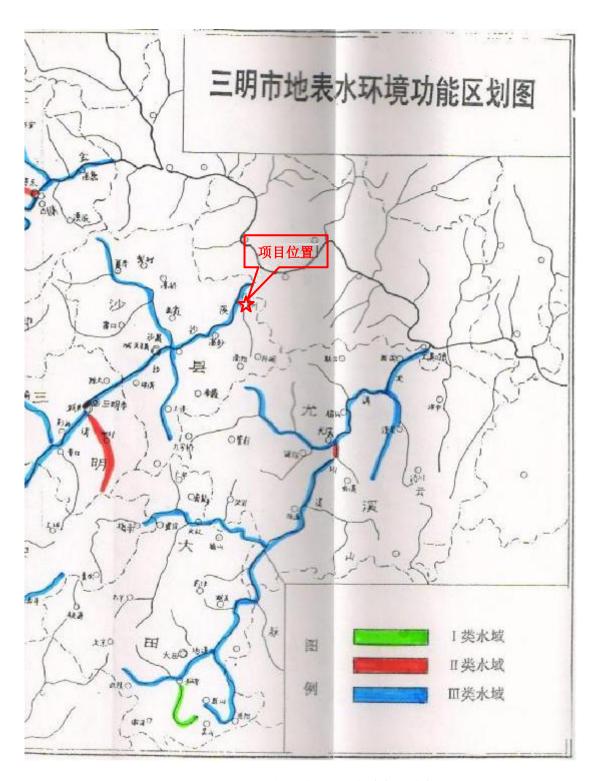


图 2.3.1-2 三明市地表水环境功能区划图

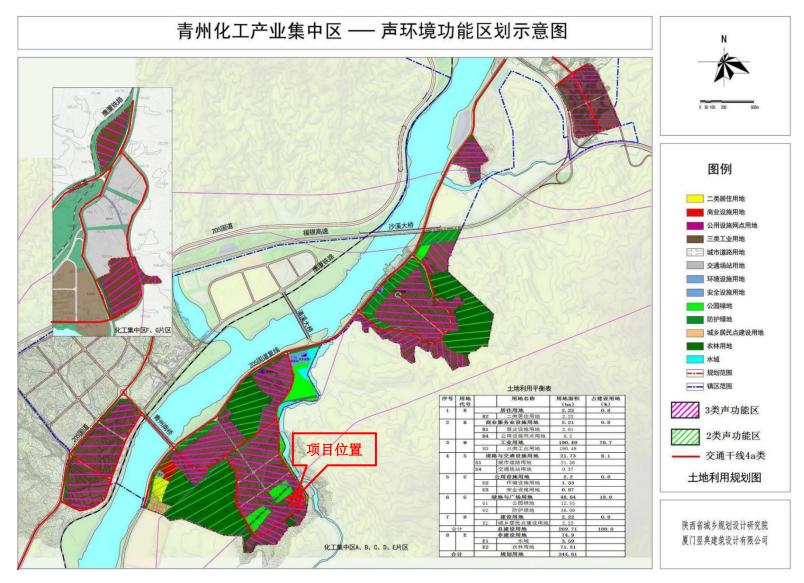


图 2.3.1-3 青州化工产业集中区声环境功能区划图

2.3.2 污染物排放标准

2.3.2.1 施工期污染物排放标准

(1) 废水排放标准

本项目施工期废水经隔油池沉淀处理后回用于厂区地面冲洗、运输车辆洗车用水等, 施工人员生活污水经临时移动式厕所房收集后,定期委托市政清污单位清运处理,施工期 无废水外排。

(2) 废气排放标准

本项目施工期废气主要为扬尘,以颗粒物表征,执行《大气污染物综合排放标准》 (GB16297-1996)表2中无组织排放监控浓度限值,具体标准见表2.3.2-1。

	10 = 10 = 1				
污染物	无组织排放监控浓度限值		单位	执行标准	
颗粒物	周界外浓度最高点	≤1.0	mg/m³	《大气污染物综合排放标准》 (GB16297-1996)表2中无组织排 放监控浓度限值	

表 2.3.2-1 施工期废气排放标准限值一览表

(3) 噪声排放标准

本项目施工期场界噪声执行《建筑施工场界环境噪声排放标准》(GB12523-2011)标准,具体标准见表 2.3.2-2。

	, , /·—		
污染物	昼间	夜间	执行标准
连续等效 A 声级	≤70dB (A)	≤55dB (A)	《建筑施工场界环境噪声排放标 准》(GB12523-2011)标准

表 2.3.2-2 施工期噪声排放标准限值一览表

2.3.2.2 运营期污染物排放标准

(1) 废水排放标准

本项目生活污水经厂区化粪池预处理后通过区域市政污水管网纳入青州化工产业集中区 B 片区的马铺污水处理厂处理;生产过程产生的脱硫系统废水、锅炉废水收集全部回用于调湿灰,化水系统浓盐水收集全部回用于燃料输送系统冲洗,输送系统冲洗废水收集全部回用于厂区降尘及地面冲洗、绿化灌溉,剩余的锅炉冲洗废水、冷却系统定期排水、一体化净水设备废水和初期雨水收集至沉淀池处理后外排入市政污水管网,进入马铺污水处理厂处理,主要污染物为 pH、COD 和 SS。

根据马铺污水处理厂环评,污水厂接管要求为:有行业排放标准的,必须执行行业排放标准中的间接排放标准后才可排入市政管网,无行业排放标准的,企业产生的工业废水必须达到《污水综合排放标准》(GB8978-1996)中的三级标准的要求,氨氮执行《污水排入

城镇下水道水质标准》(CJ343-2010)中的 B 等级排放标准。

本项目为锅炉集中供热工程,无相关行业废水排放标准,因此项目生活污水、外排生 产废水排放执行《污水综合排放标准》(GB8978-1996)中的三级标准的要求,其中氨氮参照 执行《污水排入城镇下水道水质标准》(CJ343-2010)中的 B 等级排放标准,同时严格执行 马铺污水处理厂进水水质要求。

项目废水排放标准限值见表 2.3.2-3。

废水类型 污染物 出厂排放限值 单位 执行标准 6~9 无量纲 рН 《污水综合排放标准》 COD ≤500 mg/L (GB8978-1996) 表 4 三级标准以及 BOD₅ ≤300 mg/L 马铺污水处理厂进水水质要求 生活污水 SS ≤400 mg/L 《污水排入城镇下水道水质标准》 NH₃-N ≤35 (GB/T31962-2015)表 1B级标准以 mg/L 及马铺污水处理厂进水水质要求 生产废水 (锅炉冲洗 рН 6~9 无量纲 《污水综合排放标准》 废水、冷却系统定期 (GB8978-1996) 表 4 三级标准以及 COD ≤500 mg/L 排水、一体化净水设 马铺污水处理厂进水水质要求 备废水和初期雨水) SS ≤400 mg/L

表 2.3.2-3 运营期废水排放标准限值一览表

马铺污水处理厂尾水排放标准已提升至《城镇污水处理厂污染物排放标准》 (GB18918-2002) 一级标准 A 标准, 具体排放限值见表 2.3.2-4。

污染物名称	рН	COD	BOD ₅	SS	NH ₃ -N
排放限值	6~9(无量纲)	€50	≤10	≤10	€8

表 2.3.2-4 污水处理厂尾水排放限值一览表(单位: mg/L)

其中脱硫系统废水、锅炉废水回用于调湿灰, 化水系统除盐水回用于燃料输送系统, 不外排,脱硫废水回用水质应满足《燃煤电厂石灰石-石膏湿法脱硫废水水质控制指标》 (DL/T997-2020) 水质控制指标。

	表 2.3.2-5	废水凹用水质要 求一览表	
序号	污染物	控制值	单位
1	pН	6~9	无量纲
2	COD	≤150	mg/L
3	SS	€70	mg/L
4	硫化物	≤1.0	mg/L
5	氟化物	≤30	mg/L
6	总铅	≤1.0	mg/L
7	总汞	≤0.05	mg/L
8	总砷	≤0.5	mg/L
9	总辐	≤0.1	mg/L

(2) 废气排放标准

本项目设置 2 台各 40t/h 燃煤/燃生物质蒸汽锅炉,锅炉尾气参照《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1 号)要求每小时 35(含)-65 蒸吨燃煤锅炉超低排放标准(烟尘、二氧化硫、氮氧化物排放浓度分别不高于 10、35、50 毫克/立方米),执行锅炉大气污染物排放标准的燃煤锅炉基准含氧量按 9%;另外,锅炉尾气中汞及其化合物、烟气黑度执行《锅炉大气污染物排放标准》(GB13271-2014)表 3 中燃煤锅炉大气污染物排放特别限值。锅炉配置 SCR 脱硝工艺装置需要使用氨水,存在氨气逸散,参考《工业锅炉污染防治可行技术指南》(HJ 1178-2021),新建项目采用 SNCR-SCR 联合法脱硝技术宜控制氨逃逸质量浓度低于 2.28 mg/m³

氨水储罐呼吸废气无组织排放,执行《恶臭污染物排放标准》(GB14554-1993) 表 1 标准值。

生产过程中物料装卸、贮存以及运输等其他工艺环节的颗粒物排放执行《大气污染物综合排放标准》(GB16297-1996)中表 2 的二级排放标准。

本项目运营期废气排放标准限值见表 2.3.2-6。

表 2.3.2-6 运营期废气排放标准限值一览表

废气类型	污染物	监控点	标准值		单位	执行标准
	颗粒物	锅炉烟囱	最高允许排放浓度	≤10	mg/m ³	《关于全面推进锅炉
	二氧化硫	锅炉烟囱	最高允许排放浓度	≤35	mg/m ³	污染整治促进清洁低
	氮氧化物	锅炉烟囱	最高允许排放浓度	≤50	mg/m ³	碳转型的意见》(闽
	炎(羊(化70)	TAN AME	双向几门 形从 (人)又		IIIg/III	环规〔2023〕1号)
锅炉尾气	汞及其化合物	锅炉烟囱	最高允许排放浓度	≤0.05	mg/m ³	《锅炉大气污染物排
						放标准》
	 林格曼黑度	锅炉烟囱	 最高允许排放浓度	≤1	级	(GB13271-2014) 表
	你怕支羔及	切为广州	以问儿们+//X/(/文	≥1		3 中燃煤锅炉大气污
						染物排放特别限值
 锅炉脱硝						参考《工业锅炉污染
装置氨气	 	排放口	 控制逃逸质量浓度	≤2.28	mg/m ³	防治可行技术指南》
逸散	安、	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	江 则	≥2.28	mg/m²	(HJ 1178-2021)控制
						氨逃逸浓度限值
氨水储罐						《恶臭污染物排放标
呼吸废气	氨	厂界	厂界标准值	≤1.5	mg/m ³	准》(GB14554-1993)
时						表 1 限值
			最高允许排放浓度	≤120	mg/m ³	《大气污染物综合排
工艺粉尘	 颗粒物	排放口	排气筒高度	15	m	放标准》
上乙仞土	木火木工 177 		允许排放速率	≤3.5	kg/h	(GB16297-1996) 中
		厂界	周界外浓度最高点	≤1.0	mg/m ³	表 2 的二级标准限值

(3) 噪声排放标准

项目位于 3 类声环境功能区,厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准。具体排放标准限值见表 2.3.2-7。

类别	昼间	夜间	执行标准
2 米	<654D (A)	≤55dB (A)	《工业企业厂界环境噪声排放标准》
3 类	≤65dB (A)	$\leq 55 dB (A)$	(GB12348-2008) 3 类标准

表 2.3.2-7 工业企业厂界环境噪声排放标准

(4) 固体废物

一般工业固废在厂区内暂存执行《一般工业固体废物贮存和填埋污染控制标准》 (GB18599-2020)要求。

危险废物在厂区内暂存执行《危险废物贮存污染控制标准》(GB18597-2023)和《危险废物识别标志设置技术规范》(HJ1276-2022)要求。

生活垃圾处置按照《中华人民共和国固体废物污染环境防治法(2020年修订)》 "第四章生活垃圾"相关规定要求。

2.4 评价工作等级

根据 HJ2.1-2016、HJ2.2-2018、HJ2.3-2018、HJ610-2016、HJ2.4-2021、HJ964-2018 以及 HJ169-2018等"环境影响评价技术导则"中关于评价工作级别划分的判据及对本项目区域环境特征、污染物排放量分析、确定各环境要素影响评价工作等级如下:

2.4.1 地表水环境

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中评价等级确定的相关内容,具体评价等级判定见表 2.4.1-1。

评价等级	判定依据			
	排放方式	废水排放量 Q/(m³/d);水污染物当量数 W/(无量纲)		
一级	直接排放	Q≥20000 或 W≥600000		
二级	直接排放	其他		
三级 A	直接排放	Q<200 且 W<6000		
三级 B	间接排放	_		

表 2.4.1-1 水污染影响型建设项目评价等级判定

项目地表水环境影响为水污染影响型,项目生活污水经化粪池预处理达标后通过 市政污水管网纳入马铺污水处理厂进一步处理,为间接排放;生产过程的锅炉废水、脱硫系统废水和化水系统废水收集后全部回用于生产,仅排放冷却系统定期排污水、净水装置废水、锅炉冲洗废水和初期雨水,排入市政污水管网,为间接排放。根据《环

境影响评价技术导则 地表水环境》(HJ2.3-2018),项目地表水环境影响评价工作等级判定为三级 B,可不开展区域污染源调查和可不进行水环境影响预测,主要调查依托的污水处理厂处理能力、处理工艺、设计进水水质、处理后的废水稳定达标排放情况。

2.4.2 地下水环境

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)附录 A"地下水环境影响评价行业分类表",项目属于附录 A 中"U 城镇基础设施及房地产-142、热力生产和供应工程"(报告书IV类),因此,项目地下水环境影响评价项目类别为IV类。根据导则要求,IV类建设项目可不开展地下水环境影响评价。

2.4.3 大气环境

选取项目排放的颗粒物、 SO_2 、NOx、氨、汞及其化合物大气污染物,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),本评价采用估算模型 AERSCREEN 预测项目各污染物的 Pi 值,确定项目的大气环境影响评价工作等级。根据初步工程分析结果,分别计算项目排放主要污染物的最大地面空气质量浓度占标率 P_i (第 i 个污染物,简称"最大浓度占标率"),及第 i 个污染物的地面空气质量浓度达标准值 10%时所对应的最远距离 $D_{10\%}$,筛选出项目的主要大气污染源及污染物。其中 P_i 定义为:

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

式中: P; 一第 i 个污染物的最大地面空气质量浓度占标率, %;

 C_{0i} 一第 i 个污染物的环境空气质量浓度标准, ug/m^3 ;

Ci一采用估算模型计算出的第 i 个污染物的最大 1h 地面空气质量浓度,

 ug/m^3 .

大气评价工作等级判别见表 2.4.3-1,项目评价因子和评价标准见表 2.4.3-2,估算模型参数见表 2.4.3-3,污染物最大地面浓度占标率计算结果见表 2.4.3-4。

 评价工作等级
 评价工作分级判据

 一级评价
 Pmax≥10%

 二级评价
 1%≤Pmax<10%</td>

 三级评价
 Pmax<1%</td>

表 2.4.3-1 大气评价工作等级判别表

表 2.4.3-2 评价因子和评价标准表

评价因子	平均时段	标准值/(mg/m³)	标准来源
PM_{10}	1 小时均值	0.45	
PM _{2.5}	1 小时均值	0.225	 《环境空气质量标准》(GB3095-2012)二级标准
SO_2	1 小时均值	0.5	《外况工(灰里你在》(GB3093-2012)——级你在
NOx	1 小时均值	0.2	
氨	1 小时均值	0.3	《环境影响评价技术导则 大气环境》(HJ2.2-2018)
安\	1 小町均值	0.3	附录 D 参考限值
汞及其化合物	1 小时均值	0.2	《环境空气质量标准》(GB3095-2012)二级标准

备注:颗粒物标准值取 PM_{10} 、 $PM_{2.5}$ 24 小时日平均值的 3 倍进行评价,即为 $0.9mg/m^3$;氨 1 小时均值取年均值($0.05mg/m^3$)的 6 倍进行评价,即为 $0.3mg/m^3$

表 2.4.3-3 估算模型参数表

	参数	取值	备注
城市/农村 选项	城市/农村	城市	项目周边 3km 半径范围内一半以上面积属于 城市建成区
- 地坝	人口数(城市选项时)	27 万人	/
最	高环境温度/℃	39.5℃	/
最	低环境温度/℃	-2.1℃	/
_	上地利用类型	城市	/
	区域湿度条件	2	项目属于湿润区
是否考虑	考虑地形	☑是 □否	距污染源中心点 5km 内的地形高度高于项目
地形	地形数据分辨率/m	/	排气筒高度,属于复杂地形
日不耂忠	考虑岸线熏烟	□是 ☑否	
是否考虑 岸线熏烟	岸线距离/km	/	项目 3km 范围内无大型水体,不考虑熏烟
户 线	岸线方向/°	/	

表 2.4.3-4 污染物最大地面浓度占标率计算结果

\二 >h. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		下风向最大质量浓度及 占标率		下风向最 大质量浓	D10%	标准值	评价	
	污染源		预测质量浓	占标率	度出现距	距离 (m)	(mg/m^3)	等级
			度(mg/m³)	(%)	离 (m)	(m)		
		PM_{10}	1.07E-03	0.23	57	0	0.45	三级
		PM _{2.5}	7.75E-04	0.34	57	0	0.225	三级
	锅炉烟囱	SO_2	5.62E-03	1.12	57	0	0.5	二级
		NOx	2.67E-02	13.36	57	200	0.2	一级
有		汞	1.48E-07	0.00	57	0	0.2	三级
组组		氨	1.52E-03	0.51	57	0	0.3	三级
织	粉尘排气筒 DA001	颗粒物	2.48E-02	5.51	10	0	0.45	二级
	粉尘排气筒 DA002	颗粒物	1.24E-02	2.76	10	0	0.45	二级
	粉尘排气筒 DA003	颗粒物	1.06E-02	2.36	10	0	0.45	二级

	粉尘排气筒	颗粒物	5.32E-03	1.18	10	0	0.45	二级
	DA004	木 以个丛 170	3.32E-03	1.16	10	U	0.43	一级
	粉尘排气筒	颗粒物	1.59E-02	3.53	10	0	0.45	二级
	DA005	术 以个丛 170	1.39E-02	3.33	10	U	0.43	一级
	粉尘排气筒	颗粒物	1.77E-03	0.93	10	0	0.45	三级
	DA006	术 以个丛 170	1.//E-03	0.93	10	U	0.43	二级
	破碎楼	颗粒物	3.02E-02	6.70	11	0	0.45	二级
	炉前煤仓	颗粒物	5.75E-02	12.78	10	0	0.45	一级
无	生物质料棚	颗粒物	1.41E-02	3.14	61	0	0.45	二级
组	炉前生物质仓	颗粒物	2.57E-02	5.70	10	0	0.45	二级
织	灰库	颗粒物	7.43E-02	16.52	10	0	0.45	一级
	石灰石粉仓	颗粒物	7.41E-03	1.65	10	0	0.45	二级
	氨水罐	氨	1.22E-02	4.06	10	0	0.3	二级

由上表可看出项目废气污染物 P_{max} 为 16.52%,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),确定本项目大气评价等级为一级。

2.4.4 声环境

项目所在区域《声环境质量标准》(GB3096-2008)3 类功能区,项目建设前后评价范围内敏感目标噪声级增量在 3dB(A)以下,且受影响人口数量变化不大,对照《环境影响评价技术导则 声环境》(HJ2.4-2021)中声环境影响评价等级的划分规定,项目声环境影响评价工作等级定为三级。

2.4.5 土壤环境

根据《环境影响评价技术导则 土壤环境》(HJ964-2018)附录 A 土壤环境影响评价项目类别可知,属于"燃煤锅炉总容量 65t/h(不含)以上的热力生产工程",属于III类项目。本项目占地面积约 2.46hm²,小于 5hm²,占地规模属于小型。根据项目预测,由于本项目最大落地浓度距离为 550m,在本项目厂界外 550m 及主导风向下风向的最大落地浓度范围内无农田等土壤环境敏感目标。对照土壤污染影响型评价等级分级表可知,本项目可不开展土壤环境影响评价工作。

农 2.4.3-1 工操行朱影响至厅川寺级力级农									
敏感程度		I类			II类			Ⅲ类	
评价工作等级 敏感程度	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	_
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	_
不敏感	一级	二级	二级	二级	三级	三级	三级		_
注: "一"表示可不开展	注: "一"表示可不开展土壤环境影响评价工作。								

表 2.4.5-1 土壤污染影响型评价等级分级表

2.4.6 环境风险

查阅《建设项目环境风险评价技术导则》(HJ/T169-2018)附录 B.1 突发环境事件风险物质及临界量、表 B。2 其他危险物质临界量推荐及《危险化学品重大危险源辨识》(GB18218-2018),项目涉及到的危险物质有氨水、轻柴油和机油,经计算项目危险物质数量与临界量比值 Q=2.3199>1,环境风险潜势为 II 类,项目环境风险评价工作等级为三级。

表 2.4.6-1 环境分析评价工作等级划分表

环境风险潜势	$IV \setminus IV^+$	Ш	II	I
评价工作等级	_	<u>-</u>	三	简单分析 a
a是相对于详细评价]	工作内容而言,在描	述危险废物、环境影响	向途径、环境危害后果	2、风险防范措施等
方面给出定性的说明	引。见附录 A。			

2.4.7 生态影响

项目建设工程涉及蒸汽管网铺设,供热管网采用低支架架空及直埋或地沟相结合敷设方式,根据现场勘察,供热管网铺设路线沿途不涉及国家公园、自然保护区、世界自然遗产、自然公园以及生态保护红线等生态保护目标,工程占地规模小于 20km²;建设项目选址于沙县区马铺工业集中区,位于已批准规划环评的产业园区,根据《环境影响评价技术导则 生态影响》(HJ 19-2022),可不确定评价等级,直接进行生态影响简单分析。

2.5 评价范围及环境保护目标

2.5.1 评价范围

(1) 水环境

地表水环境: 仅对项目废水依托马铺污水处理厂可行性进行分析。

地下水环境:本项目不开展地下水环境评价,不设评价范围。

(2) 大气环境

根据预测结果 D_{10%}为 200m<2.5km,则大气环境评价范围边长取 5km;以项目厂区为中心,边长为 5km 的正方形区域。

(3) 声环境

项目厂界外延 200m 范围。

(4) 土壤环境

本项目不开展土壤环境评价,不设评价范围。

(5) 环境风险

项目环境风险评价工作等级为三级,评价范围为项目边界 3km。

2.5.2 主要环境保护目标

根据现场勘察,项目所在区域为工业区,评价范围内无地表饮用水水源保护区及地下饮用水水源防护敏感区,无自然保护区及野生动物保护区,无森林公园、风景名胜区、重点文物及名胜古迹,无生态敏感与珍稀野生动植物栖息地等环境敏感目标。本项目的评价范围内环境保护目标见表 2.5.2-1,环境保护目标及评价范围见图 2.5.2-1。

表 2.5.2-1 环境保护目标一览表

	I	I						T
序	保护类别	名称	坐板	ī/m	保护对象	环境功能区划	相对厂	相对厂界
号	NA XX	11/40	X	Y	N. 7 71 30	~1.26-21 HG EZ X4	址方位	距离(m)
1		汉 / / / / / / / / / / / / / / / / / / /	250	1,606	居民区,约		NIIV	1744
1		涌溪村	-350	1696	2000 人		NW	1744
		₩ ₩ ₩	1152	0	居民区,约		W	1152
2	上层开放	管前村	-1152	0	1000 人	《环境空气质量	W	1152
	大气环境	平井	104	0.57	居民区,约	标准》	QE.	000
3	(环境风	蛋村	194	-857	200 人	(GB3095-2012)	SE	900
4	险)	二、光十	250	1011	居民区,约	二类	NIE	1004
4		后洋村	258	1011	1000 人		NE	1094
_)3V)~ 1¥ 1.1	1254	2400	居民区,约		NIE.	2010
5		澄江楼村	1354	2488	1500 人		NE	2918
				1		《声环境质量标		
	-t: 17 l à	声环境 200m 评价范围内无环境保护目				准》	,	,
6	声环境		枋	标		(GB3096-2008)	/	/
						3 类		
						《地表水环境质		
_		周边最近地	表水体が	为沙溪,	水环境功能	量标准》		1100
7	地表水环境		类别为	りⅢ类		(GB3838-2002)	NW	1188
						中Ⅲ类标准		
		项目区域	 内及周围			,	,	,
8	地下水环境	下水水	质满足环	境功能[区划要求	/	/	/
		项目区域	力及周围	土壤环	竟质量满足	,		
9	土壌圤境	土壤环境 环境功能区划要求	求	/	/	/		
					整性及生态			
10	生态影响		服务		, <u>-</u>	/	/	/
注:	L 以项目厂址中·	 心为坐标原点						

2.6 评价工作重点

在对评价区域环境质量现状调查的基础上,通过工程分析弄清项目运营过程中各种污染源的排放情况及其特征,分析项目在正常运行和事故排放过程中对周围水、气、声等环境的影响程度和范围,对项目存在的风险进行识别分析,主要分析风险源及其风险防范措施,分析拟采取的污染防治措施的有效性、可行性,提出污染物排放总量控制要求。

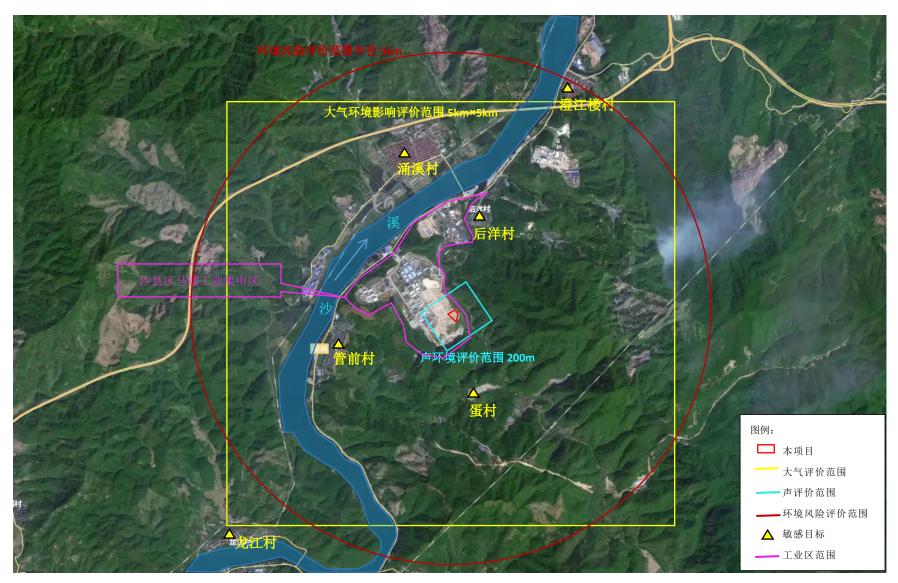


图 2.5-1 项目环境影响评价范围及环境敏感目标图

3 建设项目工程分析

3.1 项目基本情况

项目名称: 三明市沙县青州片区集中供热能源综合利用项目;

建设单位: 三明市沙县正通能源有限公司;

建设地点:位于福建省三明市沙县区青州镇马铺工业集中区 350427-20-A-38-1 地块, 青州镇康健路以西,经五路以东,纬二路以北,纬一路以南位置;

建设性质:新建;

用地面积: 厂区占地面积 24343m²:

建设规模:一期工程设计建设 2 台 40t/h 低压多燃料循环流化床锅炉(园区供热满负荷时 2 台同时运行),采用煤炭和生物质作为燃料(煤占比 70%、生物质占比 30%),同步建设烟风系统、烟气系统、点火系统、炉前给料系统、激波吹灰系统、燃料输送系统、除渣系统、除灰系统、压缩空气系统、环保系统、化水系统、水工系统、电气系统、热工控制系统等辅助附属生产设施,同时配套建设 6.7 公里园区蒸汽管网(主管 4.7 公里+支管 2 公里),满足三明市沙县马铺产业园、长桦集中区工业企业生产用汽需求。按园区现状最大热负荷需求折算,一期工程建成后年供蒸汽 34.56 万 t(1.6MPa、230℃)。

项目投资: 总投资 21650 万元, 其中环保投资约 2249 万元, 占总投资的 10.4%;

劳动定员: 拟招聘职工人数 37 人,不在厂内食宿;

工作制度: 三班制 24 小时, 供热时间约 8000 小时/年。

建设周期:场地已平整,预计2027年10月建成投产。

3.1.1 产品方案

本项目产品方案见表 3.1.1-1。

表 3.1.1-1 项目产品方案一览表

序号	产品名称	年产量(2 台)	备注
1	蒸汽(1.6MPa, 230℃)	34.56 万 t	折热力 99.70 万 GJ/a

3.1.2 工程组成

本项目建设工程内容分为主体工程、贮存工程、辅助工程、公用工程和环保工程,工程组成具体情况见表 3.1.2-1。

表 3.1.2-1 项目工程组成一览表

类别	项目组成	建设内容	备注
主体工程	锅炉房	建设2台低压多燃料循环流化床锅炉,单台规模为40t/h。 ①炉前给料系统: 分为生物质给料系统和燃煤给料系统。每台锅炉设置2台生物质螺旋给料机,连接锅炉生物质落料口,设置钢制炉前生物质料仓1座,容积15m³;每台锅炉设置2台皮带给煤机,连接锅炉落煤口,设置钢制炉前原煤仓2座,单座容积32m³;②烟风系统:每台锅炉配置1台一次风机、1台二次风机,从风机出来的冷风进入空气预热器,加热后分别送入炉膛;③烟气系统:每台锅炉配置1套石灰石-石膏湿法脱硫及旋风+布袋除尘装置,烟气由各自配套的引风机汇总至烟囱排至大气;④点火系统:采用床下油点火,使用0号轻柴油,炉前设置点火设备(高能点火装置、电动推进装置、火焰检测器、就地控制柜等);本项目采用0号轻柴油作点火助燃燃料,使用油罐车运至厂区,采用移动式油罐;⑤激波吹灰系统:锅炉尾部烟道采用激波吹灰,每台锅炉设置1套吹灰器,氧-乙炔预混爆燃方式瞬间产生冲击波,达到清灰功能;⑥除渣系统:每台锅炉炉下布置2台出力为1~3t/h冷渣器,将900℃左右炉渣经冷渣器冷却至100℃以下,落入1号皮带输渣机经2号皮带输渣机后再经斗式提升机将炉渣输送至渣仓;⑦除灰系统:每台锅炉设置1台布袋除尘器+多管除尘器除灰系统,采用干灰机械输送系统,除尘器灰头系统:每台锅炉设置1台布袋除尘器+多管除尘器除灰系统,采用干灰机械输送系统,除尘器灰头系统:每台锅炉设置1台布袋除尘器+多管除尘器除灰系统,采用干灰机械输送系统,除尘器灰头系统:每台锅炉设置1台布袋除尘器+多管除尘器除灰系统,采用干灰机械输送系统,除尘器灰头下各安装一台高效粉料泵作为主要输送设备将灰斗中的干灰输送至灰库;	新建
	蒸汽系统供热管网	建设 6.7 公里总长度的蒸汽管网,主管管径 DN300	新建
	燃料输送系统	煤输送系统 : 1 套,运输流程为地下煤坑振动给煤机→1#皮带机→锤式筛破一体破碎机→2#皮带机→3#皮带机→炉前煤仓; 生物质输送系统 : 1 套,运输流程为地下料坑双辊给料机→4#皮带机→5#皮带机→炉前生物质料仓;	新建
储运工程	灰库	新建 1 座直径 ϕ 8m 钢结构灰库 200m³,作为炉灰存放仓库,库顶配置 1 套布袋除尘器,库底部设有 2 个出灰口,一个接出力为 Q=100t/h 的干灰散装机,一个为备用接口。	新建
	渣仓	新建 1 座直径 ϕ 6m 钢结构渣仓 100m³,作为炉渣存放仓库,渣库底部设有 1 个出渣口,接出力为Q=100t/h 的干渣散装机。	新建

		生物质燃料棚	1 座,面积 33m×42m,3m 高,作为生物质燃料堆放场所;配置有 1 台装载机	新建			
		煤燃料棚	1座,面积18m×78m,5m高,作为煤燃料堆放场所,配置有1台装载机、1台电动双梁抓斗桥式起重机和1台推煤机	新建			
		氨水罐区	由 1 个常压常温氨水储罐(30m³)、清水罐(10m³)、混合罐(5m³)、卸氨泵、注液泵、配套压力液位等仪表、管道阀门及氨气监测传感器等组成				
		轻柴油油罐	在厂内采用撬装式油罐,单次储油量 5m³	新建			
		石灰石粉仓	1座,钢制粉仓,满足单台锅炉48小时的石灰石用量,仓顶配置1套除尘器。	新建			
		化水车间	设置 1 套化水系统 50t/h,包括一体化净化器、净水池、净水泵、自清洗过滤器、超滤装置、超滤水箱、反渗透给水泵、一级反渗透装置、二级反渗透装置、除盐水箱、除盐水泵,并配套给水加氨系统	新建			
		空压机房	设置 2 台 14.3m³/min 空压机,一用一备	新建			
		破碎楼	1 栋,作为煤料破碎车间,配置筛破一体机1台	新建			
辅助工程	综合水泵房		设置 1 座机械通风冷却塔及 2 台冷却水泵,机泵冷却水量为 15m³/h				
	一次水池		1 座,容积 1100m³,作为消防水池(680m³)和清水池(430m³,有效水深为 2.9m,总高度 4.20m,有效面积 149.4m²)使用	新建			
	汽车棚		1座,作为停车位	新建			
		警卫室	人员门警卫室1座和物流门警卫室1座,作为厂区出入口门卫室				
b tt ハロ		给水工程	厂区铺设有给水管网。生产用水取至沙溪,敷设水管供水至厂区;生活用水由园区市政供水管网提供	新建			
依托公用		排水工程	厂区铺设有雨污分流管网,分别接入厂区西侧道路的市政污水管网和雨水管网	新建			
工程		供电工程	由园区接入10kV市电作为项目接入电源,厂区高压用电电压等级为10.5kV	新建			
		生活污水	收集至厂区自建的化粪池预处理达标后排入市政污水管网,进入马铺污水处理厂进一步处理	新建			
环保工程	废水 治理 措施	生产废水	①锅炉排污水:锅炉产生的废水收集回用于调湿灰用水,不外排;锅炉定期冲洗废水经沉淀池处理后排入市政污水管网,进入马铺污水处理厂进一步处理。 ②化水系统排水:化水系统产生的浓盐水收集回用于燃料输送系统冲洗用水,不外排。 ③脱硫系统废水:收集回用于调湿灰用水,不外排。 ④煤泥废水:来源于输煤系统冲洗水,为间断性排水,收集回用于厂区降尘、绿化灌溉及地面冲洗用水,不外排。	新建			

		⑤循环冷却水系统排水 :日常循环使用,定期更换排水,经沉淀池处理后排入市政污水管网,进入马	
		铺污水处理厂进一步处理。	
		⑥一体化净水设备排水 : 收集至沉淀池处理后排入市政污水管网,进入马铺污水处理厂进一步处理。	
	 锅炉烟气	采用低氮燃烧技术+SNCR+高温 SCR 脱硝工艺+多管除尘-布袋除尘+石灰石-石膏湿法脱硫装置处理后	新
		经1根45m高烟囱有组织排放(2台锅炉共用1根烟囱)	
	煤燃料破碎粉尘	破碎机台上方加设集气装置收集,经 1 套布袋除尘器 TA001 处理后排放	新
応 /≡	炉前煤仓粉尘	仓顶配置的 1 套布袋除尘器 TA002 收集处理后排放	新
治理 措施	生物质燃料破碎粉 尘	破碎机台上方加设集气装置收集,经 1 套布袋除尘器 TA003 处理后排放	新
	炉前生物质仓粉尘	仓项配置的 1 套布袋除尘器 TA004 处理后排放	新
	灰库粉尘	仓顶配置的 1 套布袋除尘器 TA005 处理后排放	新
	石灰石粉仓粉尘	仓顶配置的 1 套布袋除尘器 TA006 处理后排放	新
	氨气	氨水罐采取密封式储罐,少量逸出的氨气导入清水罐稀释	新
	噪声治理措施	优先选用低噪声设备,采取隔声、吸声、安装消音器等降噪措施	新
	危险废物	建有危废贮存场所 1 个,面积约 100m²,位于厂区东北侧	新
固废		①炉渣:设置 1 座直径φ6m 钢结构渣仓 100m ³	
四 及 贮存		②飞灰: 设置 1 座直径φ8m 钢结构灰库 200m ³	
及处	 一般固废	③脱硫石膏:设置1座石膏贮存间,储存能力按1台炉燃煤5d的石膏产量设计	新
及处 置措		④废离子交换树脂: 更换下后由厂商负责回收	功
施		⑤污泥: 厂区内规划有1个污泥临时存放区	
ЛE		⑥废滤袋:由厂商定期更换,更换下后由厂商负责回收	
	生活垃圾	收集至垃圾桶内,由环卫部门定期清运	新
		①氨水储罐四周设置 4m×4m×2m=32m³ 围堰;	
环	境风险防范措施	②设置雨污切换阀门,并设置 1 个事故应急池,容积 220m³;	新
		③设置初期雨水池 1 个,容积 77m³	

3.1.3 热经济性指标

本项目锅炉热经济性指标情况见表 3.1.3-1。

表 3.1.3-1 锅炉热经济性指标表

序号	项目	单位	参数(单台)	备注
1	锅炉供热量	t/h	37	→ 平均负荷工况
1	树炉 供	GJ/h	106.74	下均贝何工仇
2	锅炉蒸发量	t/h	39.78	平均负荷工况
3	年运行时间	h	8000	-
4	锅炉设备年利用小时数	h	7956	-
5	年供热量	万 t/a	29.6	平均负荷工况
3	十六次里	万 GJ/a	85.39	-
6	年燃料消耗量	t/a	31200	-
6.1	其中: 煤炭消耗量	t/a	21840	-
6.2	其中: 生物质消耗量	t/a	9360	-
7	燃料折标准煤量	tce/a	31038.15	-
7.1	其中: 煤炭折标准煤量	tce/a	17295.1	-
7.2	其中: 生物质折标准煤量	tce/a	3724	-
8	年耗电总量	万 kwh/a	758.71	-
9	年耗柴油总量	t/a	128.65	-
10	供热综合标煤耗	Kg/GJ	39.28	-
11	供热燃料标煤耗	Kgce/GJ	37.97	-
12	单位热量电耗	Kwh/GJ	8.89	-
13	能源利用效率	%	87.35%	-

3.2 供热规模及负荷

3.2.1 热负荷

根据《三明市沙县青州片区集中供热能源综合利用项目可行性研究报告》分析,一期拟定近期供热用户有青州日化、德利纸业、楚兴药业、铭峰高分子、巴汉夫(明祥化工)、三明合力、中闽大地、盛春纸业、福建远润生物科技共计9家企业,分布于三明市沙县马铺产业园、长桦集中区。三明市沙县马铺产业园、长桦集中区本次供热范围最大热负荷为43t/h,拟建设2台40t/h 低压多燃料循环流化床锅炉,供热范围是表3.2.1-1中所有企业,后续陆续实施整个园区供热全覆盖。

表 3.2.1-1 园区企业热负荷及供热规模统计表

	使用单位	所属	用汽参数		热负荷(t/h)		供热	供汽参数		到厂参数		
序			压力	E力 温度	平 最	县	最	供然 距离	压力	温度	压力	温度
号	及/17年底	行业	(M	(℃)	' 均	大	小	(m)	(M	\mathbb{C}	(MP	(℃
			Pa)		Ţ			(111)	Pa))	a))
	沙县马铺产业园											
1	福建沙县青州 日化有限公司	化工 行业	1	180	3	3.5	2.5	3000	1.6	230	1.22	215
2	福建省沙县德 利纸业有限公 司	纸制 造行 业	1.12	185	3.5	5	2	3000	1.6	230	1.18	213
3	福建楚兴药业 有限公司	医药 行业	0.4	140	0.8	1	0.6	1600	1.6	230	1.35	220
4	福建铭峰高分 子有限公司	化工 行业	1.1	185	2	3	1	1150	1.6	230	1.45	224
5	福建民祥化工 新材料有限公 司(与福建巴汉 夫科技股份有 限公司共用)	化工行业	1	180	1.5	2	1	750	1.6	230	1.5	226
				-	长桦集	中区						
1	福建三明合力 新材料科技有 限公司	新材 料行 业	0.6	165	3.5	4.5	2	4100	1.6	230	1.08	209
2	福建中闽大地 纳米新材料有 限公司	新材 料行 业	1.25	185	10	15	8	3800	1.6	230	1.12	211
3	沙县盛春纸业 有限公司	纸制 造行 业	1.25	185	2	4	1.5	3400	1.6	230	1.16	212
4	福建远润生物 科技有限公司	竹木 行业	0.8	180	4	5	3	5000	1.6	230	0.97	205
	总合计热负荷		-	-	30. 3	43	21. 6	-	-	-	-	-

根据园区现有企业用汽统计及负荷预测,本工程拟建设 2 台 40t/h 燃煤/生物质低压循环流化床锅炉,可以满足园区内企业现状最大热负荷需求。

3.2.2 供热管网

根据对用户热负荷需求的分析,热负荷为生产工艺性热负荷,且要求为过热蒸汽,供汽压力 1.6MPa,供汽温度为 230℃。

(1) 供热管道材料

蒸汽管道,采用国标 GB/T3087-2022 无缝钢管,材质为 20#钢。

(2) 供热管网设计

本工程供热管网采用低支架架空及直埋或地沟相结合敷设方式。

热力管道自热源点向西北低架空敷设至道路尽头,向西,然后向北至马铺产业园,蒸汽主管道敷设管径为 DN300,距离大约 1.2 公里。马铺产业园至青州日化蒸汽管道,沿着 205 国道绿化边沿带(靠河侧)向东低架空敷设至青州日化,管径为 DN300,距离大约 1.4 公里。青州日化至盛春纸业蒸汽管道,沿着 205 国道绿化边沿带(靠河侧)向东北低架空敷设,管径为 DN200,距离大约 0.3 公里。盛春纸业至合力新材料蒸汽管道,沿着 205 国道绿化边沿带(靠河侧)向东北低架空敷设,管径为 DN150,距离大约 1.8 公里。蒸汽管道跨越盛春纸业附近河道时,在原有桥梁附近新增约 30m 的桁架用于支撑蒸汽管道。

实际运行时,可以根据管网的参数以及用户的要求,调整锅炉出口蒸汽的参数,以提高整体热效率。项目蒸汽管网路由如下:

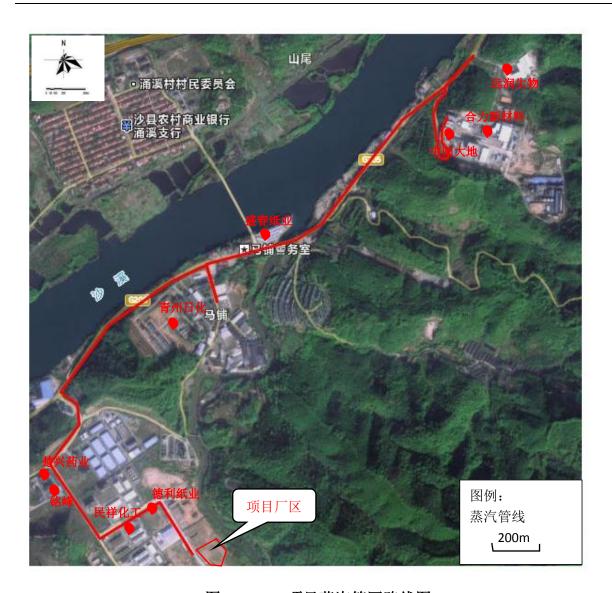


图 3.2.3-1 项目蒸汽管网路线图

(3) 保温材料

项目供汽管道架空保温材料采用纳米微孔保温毡,防潮层为双面铝箔玻纤布,保护层为铝板。

(4) 管道疏水

项目主蒸汽管道考虑有适当的疏水点和相应的疏水阀以保证锅炉在启动暖管和低 负荷或故障条件下能及时疏尽管道中的冷凝水。项目供热管道疏水排放方式: 所有疏水 均接至道路边雨水井,疏水点距离河道的最近距离约 10m。

3.3 拟取代园区锅炉情况

本项目建设后,试运行一年内计划逐步关停园区内的9台在用锅炉,包括沙县马铺产业园内的福建沙县青州日化有限公司、福建省沙县德利纸业有限公司、福建楚兴药业有限公司、福建铭峰高分子有限公司和福建民祥化工新材料有限公司(巴汉夫)在用锅炉,长桦集中区内的福建三明合力新材料科技有限公司、福建中闽大地纳米新材料有限公司、沙县盛春纸业有限公司和福建远润生物科技有限公司在用锅炉,以满足本集中供热项目顺利投产运营。

拟逐步关停企业锅炉使用情况见表 3.3-1。

序号	使用单位	数量	锅炉规模(t/h)	燃料类型
1	福建沙县青州日化有限公司		8.44	生物质
2	福建省沙县德利纸业有限公司	1台	10	生物质
3	福建楚兴药业有限公司	1台	8	天然气
4	4 福建铭峰高分子有限公司		4	生物质
5	5 福建民祥化工新材料有限公司(巴汉夫)		20	煤炭
6	福建三明合力新材料科技有限公司	1台	10	生物质
7	 福建中闽大地纳米新材料有限公司	2 台	15	生物质
/	個建中国人地纳木制材料有限公司 	2 🗆	20	天然气
8	沙县盛春纸业有限公司	1台	5	生物质
9	福建远润生物科技有限公司	1台	4	天然气

表 3.3-1 园区拟逐步关停企业锅炉情况一览表

3.4锅炉房工程

3.4.1 锅炉选型及规模

经过设计方案比选,综合本项目工程燃料使用情况,选用循环流化床锅炉,共设置2台。锅炉设备基本参数见下表:

表 3.4.1-1 锅炉基本参数表

序号	项目	单位	参数
1	锅炉型号	/	DH×40-2.5/350-H(SS)型低压循环流化床燃煤锅炉
2	最大连续蒸发量	t/h	40
3	过热蒸汽压力	Mpa	1.6~2.5
4	过热蒸汽温度	$^{\circ}$	230~350
5	给水温度	${\mathbb C}$	105
6	冷空气温度	$^{\circ}$	20
7	排烟温度	$^{\circ}$	≤140
8	锅炉效率	%	≥91.16%
9	运行时间	h	8000

3.4.2 燃料储存与供应系统

(1) 燃料厂外运输方式

供热站燃料以原煤为主,以生物质燃料为辅;燃料厂外运输采用汽车运输,燃料的收购、运输、存储及供应由燃料供应公司负责。生物质燃料选取周边两百公里范围内木业加工厂边角料,由汽车运输到厂。

(2) 卸料设施

本项目燃料运输车辆进厂后,先经过厂区出入口的电子称进行称重,再采取自卸或者机械方式将燃料卸入干煤棚或生物质料棚。

(3) 燃料储存设施

本工程不设露天煤场。厂区南侧设置 1 个半封闭式干煤棚贮煤场,煤堆堆高 3m,设计面积 33m×42m,贮煤场有效存煤量 3850t,可供本期工程单台锅炉燃用 29.4 天。设有 1 个半封闭式生物质料棚,堆高 5m,设计面积 18m×78m,贮生物质料场有效存量 840t,可供本期工程单台锅炉燃用 15 天。设有 1 座 15m³ 炉前生物质料仓和 2 座各 32m³ 炉前煤仓,可以满足锅炉运行 10 小时的用量。干煤库和生物质料棚内均设装载机,负责上煤(料)和倒堆。

项目燃料消耗情况统计如下:

表 3.4.2-1 项目燃料消耗情况统计表

名称	单位	煤剂	炭	生物质燃料		
1 石柳		单台消耗	两台消耗	单台消耗	两台消耗	
锅炉耗量	t/h	5.46	10.92	2.34	4.68	
锅炉日耗量	t/d	131.04	262.08	56.16	112.32	
锅炉年耗量	t/a	43680	87360	18720	37440	

(4) 燃料运输系统

本项目燃料运输系统分为输煤和输送生物质燃料两套系统,料仓层采用双侧犁式卸料器卸料。燃料运输系统的设备运行采用计算机程序控制,并配备监控监视。

1) 原料场设备

本工程煤场配备一个受煤斗,采用1台电动双梁抓斗桥式起重机进行来煤堆放和回取,采用1台ZL50型装载机进行来料堆放和回取辅助作业;本工程生物质料场配备1个受料斗,采用1台ZL50型装载机进行来煤堆放和回取,同时全厂还配备1台T220型推煤机进行料场辅助作业。

2) 筛碎设备

为满足循环流化床锅炉对燃煤粒度的要求,在运煤系统中设有碎煤机室 1 座。碎煤机室内布置有 FHP60-8 型环锤式筛破一体破碎机 1 台,额定出力 60t/h,入料粒度≤250 mm,出料粒度≤10 mm,电机功率 2×75kW。环锤式筛破一体破碎机进料处布置有均匀布料器。

3) 输送设备

本系统共新设 5 段单路皮带,从生物质料棚煤场至主厂房的所有皮带机即 C4~C5 带均为带宽 B=1000mm,带速 V=0.8m/s,额定出力 Qe=30t/h,从干煤棚煤场至主厂房的 所有皮带机即 C1~C3 带均为带宽 B=500mm,带速 V=0.8m/s,额定出力 Qe=30t/h。

3.4.3 燃烧系统

本项目使用的锅炉为 DH×40-2.5/350-H(SS)型低压循环流化床燃煤锅炉。锅炉燃烧系统主要由给料装置、点火系统、布风装置、分离器、返料回灰系统、排渣装置、烟风系统、烟气除尘系统、脱硫脱硝系统组成。

(1) 给料装置

每台炉配 2 个钢制炉前原煤仓和 1 个钢制炉前生物质料仓,每个原煤仓的几何容积为 32m³,2 个可储存锅炉 B—MCR 工况下约 12 小时燃煤耗量,每个生物质料仓的几何容积为 15m³,1 个可储存锅炉 B—MCR 工况下约 1 小时燃生物质料耗量。每个原煤仓下设 1 个落料口与皮带给料机相连,每台皮带给料机最大出力为 0~15t/h,每台锅炉为 2 台并联皮带给煤机和 2 台串联螺旋给生物质料机。

(2) 点火系统

本项目锅炉采用床下油点火,炉前设置点火设备。根据锅炉临时启动点火和冷态启

动的要求,本项目采用0号轻柴油作点火助燃燃料,使用油罐车运至厂区,采用移动式油罐。

(3) 烟风系统

锅炉采用平衡通风系统。

鼓风系统设1台离心式一次风机和1台离心式二次风机和2台返料风机。一次风机 送风量占总风量60%,一次风主体经一次风空气预热器加热后送至燃烧室下部风室,经 布风系统进入炉膛,点火用风也由一次风供给;小部分一次风送至给煤机作为密封风及 播煤风。

二次风机送风量占总风量 40%,经二次风空气预热器加热后送至燃烧室前后墙二次 风箱,通过风箱进入不同高度布置的二次风管,高速进入燃烧室。

设置两台返料风机,用于加强锅炉燃料流化。一台工作,一台备用。

每台锅炉设1台离心式引风机,烟气从炉膛出口通过尾部受热面,经省煤器、空气 预热器,然后通过烟道进入多管除尘器,布袋除尘器,引风机,经石灰石-石膏法脱硫, 再由烟囱排至大气。

(4) 烟气除尘系统

本工程布袋除尘器+多管除尘器除灰系统采用干灰机械输送系统,在2台布袋除尘器+多管除尘器每个灰斗下各设一个高效粉料泵,干灰落入粉料泵与压缩空气充分混合后,通过气力输送管道到达灰库内进行储存;在灰库下设有干、湿灰分除装置,装车外运至综合利用场所。

(5) 激波吹灰系统

锅炉尾部烟道采用激波吹灰,每台设置1套吹灰器。通过激波发生器,氧-乙炔预混 爆燃方式瞬间产生冲击波,达到清灰功能。

3.4.4 热力系统

(1) 给水系统

1)低压给水系统

按给水管道工作压力划分,从除氧器给水箱出口到给水泵进口之间的管道为低压给水管道。低压给水采用母管制,每台除氧器给水箱出口的低压给水汇集至母管,再从母管上分别引出一根管道接到给水泵入口。

2)高压给水系统

高压给水系统为高压给水冷母管,采用集中母管制,母管管径为89×4(GB3087) 材质为20无缝钢管。本期工程设置2台电动给水泵,流量:46m³/h,一运一备,一台电动调速给水泵。给水泵容量按给水系统设计容量再加10%裕量进行选择。

(2) 主蒸汽系统

主蒸汽系统原则上采用单母管。从 2 台锅炉的集汽集箱出口各引出一根 325×10 (GB3087) 的无缝钢管,分别接分汽缸。主蒸汽管道材质为 20 无缝钢管。主汽管道设启动疏水管路至疏水箱,供锅炉启动主蒸汽管道暖管疏水用。

(3) 除氧器加热系统

除氧器加热蒸汽由锅炉副汽引出母管,母管管径为219×6(GB3087)材质为20无缝钢管。2台锅炉共配置1台出力为45t/h的大气旋膜除氧器和1台容积为20m³的除氧水箱。

(4) 工业供热系统

对外供热的工业蒸汽由分汽缸引出一根 Φ 325×10(GB3087)的供热母管,然后供往热用户。

(5) 补水系统

化学除盐水经锅炉冷渣机预热后直接补入大气旋膜式除氧器。除氧器的正常补水管 路上设有电动调节阀,可自动调节适应不同工况下不同负荷所需的锅炉给水补水量。本 期工程不考虑对外供热的凝结水回收。

3.4.5 除灰渣系统

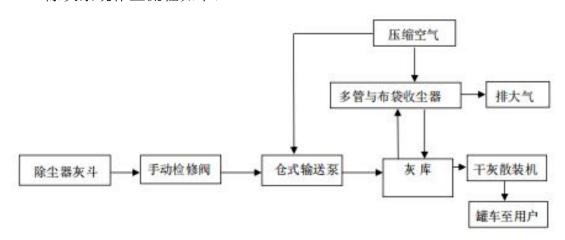
本项目采用干除灰、干除渣方案,分储分运方式。除灰渣系统采用 DCS 集中控制, 其控制点设在除尘控制室,灰库卸灰部分采用就地控制。

(1) 除渣系统

40t/hCFB 锅炉冷渣管装有电动放渣阀及膨胀节,再与冷渣器相接,冷渣器排渣口下部安装一台长 LH=28.139m 的 CZ1 胶带输送机,将冷却后的炉底渣连续送出至落渣斗,再由斗提机提升至渣库。

项目新建 1 座直径 Φ 6m 钢结构储渣库 100m³, 可容纳 1 台锅炉 8 天的锅炉排渣量。 渣库底部设有 1 个出渣口,接出力为 O=100t/h 的干渣散装机。

除渣系统作业流程如下:


冷渣器排渣→CZ1 胶带输送机→斗提机→渣库→散装机→罐车至用户

(2) 除灰系统

每台锅炉配1台多管除尘器与1台布袋除尘器,每台多管除尘器设1个灰斗;每台布袋除尘器设4个灰斗,灰量均匀分配。除尘器灰斗下来的干灰通过仓泵经管道用正压气力输送至灰库贮存。输送距离约300m,输送高差为25m。

项目新建钢灰库一座(两台炉共用),直径Φ8m,容积200m³,设计库容能满足储存1台40t/hCFB锅炉7.5天的干灰排放量。灰库顶装有布袋除尘器一台,输灰的压缩空气经布袋除尘器过滤后排向大气;灰库底部设有2个出灰口,一个接出力为Q=100t/h的干灰散装机,一个为备用接口,备用接口能够满足安装打包机或加湿搅拌机的要求。

除灰系统作业流程如下:

(3) 压缩空气系统

项目全厂用压缩空气统一考虑,包括灰库除尘、锅炉烟气脱硝及布袋除尘与脱硫系统、锅炉装置控制系统、厂区除尘装置、锅炉点火助燃油系统吹扫等。

项目空压机按两台 14.3m³/min 设计,1 用 1 备;设置两套组合式 14.3m³/min 的压缩空气净化装置。空压机缓冲储气罐 1 台,成品气仪用和检修用储气罐各一台,容积均为 10m³。

空压系统的流程:空压机→中间储罐→干燥机→外输储罐。

3.4.6 化水系统

本项目锅炉取水源为沙溪地表水,为保证锅炉补给水处理系统的出水水质,满足锅炉对汽水品质的要求,锅炉补给水系统拟采用如下工艺:

原水→一体化净水器(出力: 80m³/h)→净水池(1000m³,混凝土)→净水泵(一

用一备)→自清洗过滤器→超滤装置→超滤水箱 50m³→反渗透给水泵(一用一备)→一级反渗透装置(50m³/h)→二级反渗透装置(50m³/h)→除盐水箱(120m³)→加氨装置(1箱2泵)→除盐水泵→冷渣机→除氧器。

(1) 给水质量

锅炉用水质量标准执行《工业锅炉水质》(GB/T1576-2018),水质应达到溶氧≤ 0.05mg/L、铁≤0.10mg/L、电导率(25°C)≤100uS/cm、硬度≤0.03mmol/L、油≤2.0umg/L。

(2) 系统出力

项目汽水损失如下:

序号	损失类别	取传让管武法提	数值(m³/h)		
17° 5	坝大矢加	取值计算或依据	正常	最大	
1	厂内水汽循环损失量	40×1×5%	2	2	
2	锅炉排污损失	40×1×1%	0.8	0.8	
3	启动或事故增加出力	40×10%	/	4	
4	工业供汽损失	/	29.8	43.2	
	合计 /		32.6	50	

表 3.4.6-1 项目汽水损失统计表

根据以上各损失量统计,并考虑一定的富裕量,本工程最大补给水量为 50t/h。锅炉补给水设备选型按 50t/h(二级反渗透)设备,设计出力可达 50t/h。

(3) 热力系统加药

本工程设置给水加氨系统、炉水加磷酸盐加药系统。

本工程给水加氨采用手动加药方式,加药点设在除盐水泵出水管上,设给水组合加药装置各一套,每套共设2台溶液箱,2台加氨泵(1用1备)。

本工程炉水加磷酸盐处理采用手动加药方式,加药点为汽包内。设炉水组合加药装置一套,每套共设2台磷酸盐溶液箱,2台磷酸盐加药泵,加药泵为1用1备。

(4) 水汽取样

为监测热力系统的运行状况,每台机组设1套水汽集中取样分析系统,设置必要的 在线仪表。取样设备布置在锅炉房运行层的取样间内。

(5) 循环工业水处理

本工程轴承冷却水与取样冷却水采用二次循环冷却,需要对循环水进行处理。循环水采用加阻垢剂和杀菌剂处理,杀菌剂暂时采用直接投加方式,预留加杀菌剂装置的场地。设加阻垢剂装置1套,两台锅炉公用,布置在冷却塔附近。

3.4.7 烟气净化系统

根据锅炉特点和环保排放指标,本项目脱硝采用低氮燃烧+SNCR+高温 SCR 脱硝工艺;脱硫采用炉内石灰石脱硫+炉后石灰石石膏法工艺,除尘采用多管除尘+布袋除尘器。

(1) 除尘系统

本项目采用布袋除尘器+多管除尘器。采用干灰机械输送系统,在 2 台布袋除尘器+多管除尘器每个灰斗下各设一个高效粉料泵,干灰落入粉料泵与压缩空气充分混合后,通过气力输送管道到达灰库内进行储存。多管除尘器设计处理烟气量: 120000m³/h,布袋除尘器设计处理烟气量: 120000m³/h。

(2) 脱硫系统

项目烟气脱硫系统采用炉内脱硫+石灰石-石膏湿法炉外脱硫技术,一炉一塔方案。

①吸收剂制备

脱硫系统选用石灰石作为吸收剂,其品质要求为石灰石粉≥250 目,过筛率 95%,CaCO₃含量 85%。石灰石采用专用密封罐车通过公路运输直接送至厂内石灰粉仓。两台锅炉的脱硫装置公用一套吸收剂制备系统,该系统的作用是储存石灰石粉和制备石灰浆液。

粉仓内的石灰石粉经料机送至石灰石浆液箱,经加水搅拌至质量浓度约30%左右的石灰石浆液再由石灰石供浆泵送入吸收塔。进入吸收塔的石灰石浆液量根据脱硫装置进出口的SO2浓度及吸收塔浆液的pH值进行控制。

②SO2吸收系统

锅炉烟气经除尘后经引风机升压后进入吸收塔。塔内烟气流动上升,与吸收塔上部喷淋层喷淋下来的石灰浆液逆向接触洗涤,烟气中的 SO₂与石灰浆液(CaCO₃)发生化学反应,生成亚硫酸钙(CaSO₃),汇于吸收塔下部的浆池。浆池中设置搅拌器连续运转,同时氧化风机向浆池送入空气,进行强制氧化,使亚硫酸钙氧化为硫酸钙(石膏CaSO₄·2H₂O),再用石膏浆液排出泵送入石膏处理系统进行一、二级脱水处理。脱硫产生的废水送入厂区废水处理系统统一处理后部分回用,剩余废水达标排放。

③浆液排放和回收系统

2 台锅炉设置 1 个公用的事故浆液罐及浆液返回泵,事故浆罐的有效容积按可贮存 1 座吸收塔正常液位时的浆液量设计;在脱硫系统解列或出现事故停机需要检修时,吸 收塔内的吸收浆液由吸收塔排出泵排出存入事故浆液箱中,以便对脱硫塔进行维修。吸 收塔重新启动前,通过事故浆液返回泵将事故浆罐内的浆液送回吸收塔。

脱硫装置的浆罐、浆液管道和浆液泵等,在停运时需要进行冲洗,其冲洗水就近收集到各个区域的集水坑内,然后用泵送至事故浆罐或吸收塔。按每塔设置1个集水坑考虑,脱水区集水坑与滤液水池合并设置。

④石膏脱水系统

全厂设置1套公用的石膏浆液缓存、给料设施及1座公用的石膏浆液旋流站。从吸收塔排出的石膏浆液(质量浓度约10%),进入石膏浆液箱缓存,由石膏浆液泵(2台,1用1备)输送到石膏浆液旋流站,经旋流站浓缩至质量浓度40%~50%后,进入真空皮带脱水机脱水,脱水后的石膏其表面含水量约10%,卸入石膏贮存间存放待运。

石膏浆液旋流站分离出来的溢流液进入滤液水池,其中一部分溢流液经滤液水泵送 回吸收塔循环使用,另一部分溢流液经废水旋流站给料泵送入废水旋流站进一步浓缩处 理,其底流返回滤液水池,溢流液排入废水箱,脱硫废水回用于调湿灰用水。

拟设置 1 座石膏贮存间,储存能力按 1 台炉 BMCR 工况下燃用设计煤种时 5d 的石膏产量设计。

⑤脱硫塔除雾系统

锅炉烟气经除尘器后,通过各自引风机,脱硫塔采用一炉一塔,公用设施设一套,供两台锅炉使用,脱硫塔上部各预留一台湿电除尘器,作为烟尘排放的备用设施。脱硫塔设三级喷淋层和两级除雾器。

(3) 脱硝系统

本项目烟气脱硝采用选择性非催化还原法脱硝工艺(SNCR)+低氮燃烧+选择性催化还原法脱硝工艺(SCR)。选用氨水作为还原剂(浓度 20%),通过汽车运输至厂区。系统包括氨水溶液存储及输送系统、氨水溶液计量分配及喷射系统。

①氨水的存储及输送系统

氨水溶液储罐: 为常压容器,氨储罐 $1 \uparrow (V=30m^3)$ 、清水罐 $1 \uparrow (V=10m^3)$ 、混合罐 $1 \uparrow (V=5m^3)$ 。

②氨水溶液计量分配及喷射系统

本工程共用 1 套氨水溶液计量分配装置,包括压力测量装置、流量计、调节阀和排污阀组成,用于计量和控制进入二次风管道氨水溶液的量。

每炉喷枪位于旋风分离器入口侧,每支喷枪连接有氨水溶液和压缩空气 2 股流体, 氨水由压缩空气雾化后喷入分离器入口处。

③SCR 反应器

每台锅炉配 2 个 SCR 反应器,反应器截面成矩形,里面填充蜂窝式催化剂。在 SCR 反应器内,烟气与 NH₃ 的混合物在通过催化剂层时,烟气中的 NOx 在催化剂的作用下与 NH₃ 反应生成 N_2 与 H_2O ,从而达到除去烟气中 NOx 的目的。

④SCR 吹灰系统和压缩空气系统

催化剂采用声波吹灰,吹灰气源由主厂压缩空气系统接出。每台炉设置 2 套声波吹灰器。脱硝系统区域内压缩空气气源从主厂压缩空气系统引接,气源压力为 0.4~0.8MPa。在脱硝系统内需要设置压缩空气储罐,供 SNCR 氨水溶液喷枪雾化和 SCR 声波吹灰使用。每台炉设置 1 台容积为 1m³ 的压缩空气储罐。

(4) 烟囱

本工程锅炉设置 1 座烟囱,烟囱高度 45m,出口内径 2.2m,采用钢筋混凝土形式。

(5) 烟气连续监测系统

本工程在除尘器后尾部烟道上装设烟气连续监测系统,并与环保部门联网,对工程排放的大气污染物进行实时监测,主要监测因子为 SO₂、NO₂、烟尘的排放浓度和排放量,以及含氧量、烟气温度、烟气压力、烟气湿度等辅助参数测量,为运行管理和环境管理提供依据。同时按规定设置烟气永久采样孔,安装采样监测平台,并设有工业电视系统,烟气在线监测数据可通过显示屏实时对外公布。

3.5 总平布置合理性

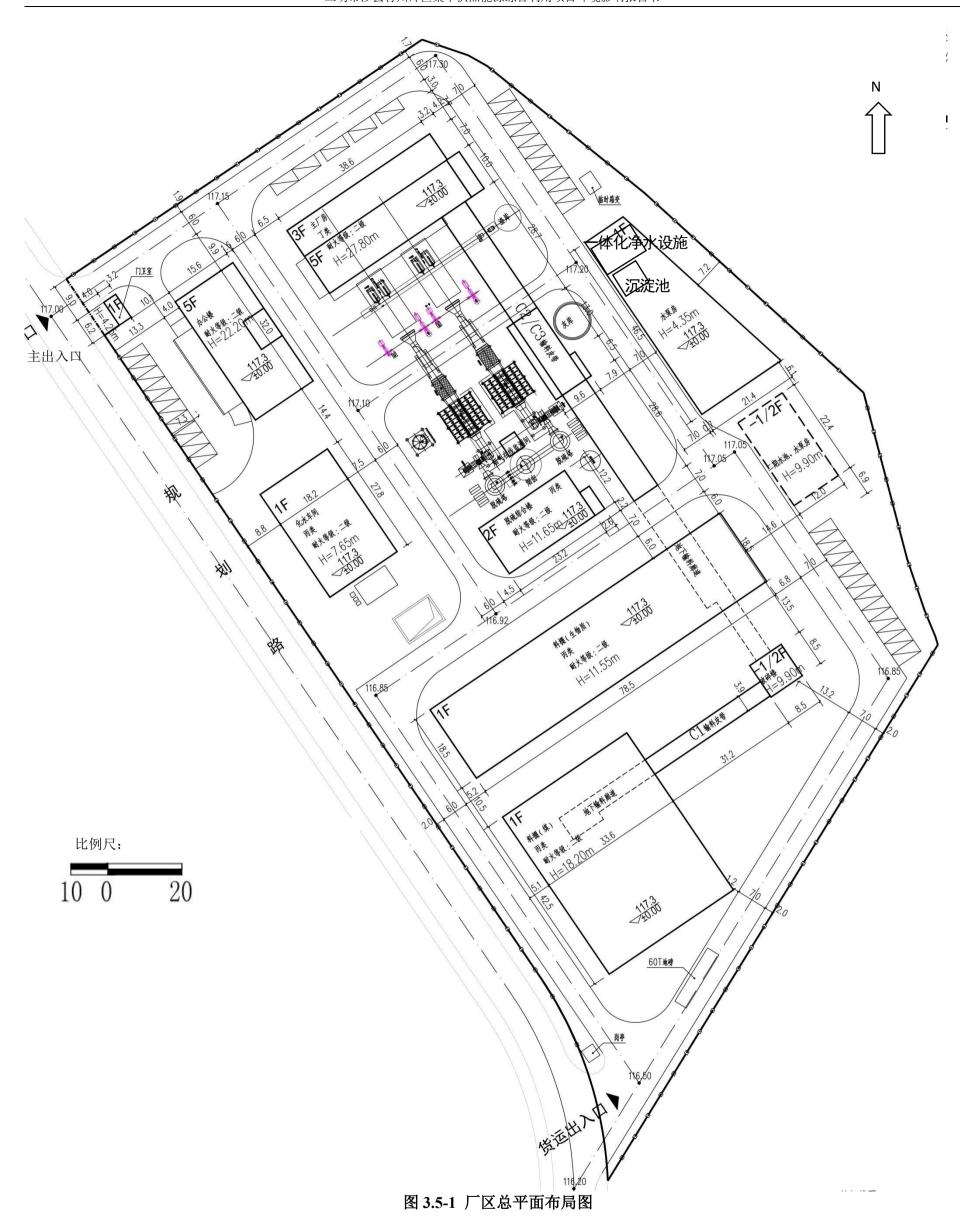
本项目厂区总平面布置由西向东依次布置厂前区-生产厂区-水处理设施区。厂区总平面布局见图 3.5-1。

1) 厂前区布置

厂前区位于厂区西侧,从北往南依次布置办公楼、化学水处理站等。燃料取样为人 工取样,在化学水处理站设有煤取样、化验等设备。

2) 生产厂区布置

生产区布置于厂区的中部,主厂房布置在生产区的北侧,由北向南依次布置除氧间-燃料间-锅炉-多管除尘器-布袋除尘器、引风机、烟道、脱硫塔及烟囱。生产辅助设施布置在生产区的南面,由北向南依次布置生物质料棚及干煤棚。脱硝综合设施与脱硫综合楼布置在烟囱的南侧。输煤栈桥由东向西从锅炉房的北端东侧接入锅炉房。


3) 水处理设施区布置

从北往南依次为:污泥存放区、水泵房(内规划一体化净水设施、脱硫废水处理池和生产废水沉淀池)、一次水池及事故应急池等。

4) 厂区运输路线

厂区设置了两个出入口: 进厂主入口和货运出入口。进厂主入口布置在厂区西北角,供上下班人、车流使用。货运出入口布置在厂区西南角,供原煤、灰渣等运输车辆使用。 汽车衡布置在厂区货运道路入口附近的位置,靠近货运出入口,便于原煤运输车辆称重 检验,同时厂区南面货运道路能满足运输车辆排队等候的需要。

综上所述,本工程总平面布置根据生产工艺流程合理规划,物料运输便利,各装置 之间动线明确,因此本项目总平面布置合理。

3.6 主要生产设备

本次工程锅炉配套主要设备及型号规格详见下表 3.6-1。

表 3.6-1 本工程主要生产设备配置情况一览表

序号	设备名称	设备型号	单位	数量
一、锅	炉本体			
1	锅炉	燃煤/生物质低压循环流化床锅炉,单 台规模为 40t/h	台	2
2	一次阀门、仪表	/	套	2
3	防雨棚	/	个	2
二、锅	炉配套装置			
	一次风机	/	台	2
1	一次风机消声器和测风装置	/	套	2
	配套电机	/	套	2
2	引风机	/	台	2
2	配套电机	/	套	2
	二次风机	/	台	2
3	二次风机消声器和测风装置	/	套	2
	配套电机	/	套	2
4	螺旋给料机	/	台	4
4	皮带给煤机	/	台	4
5	炉前点火设备	包含高能点火装置、电动推进装置、 火焰检测器、就地控制柜等	套	2
6	吹灰器	/	套	2
	除氧器	45t/h	台	1
7	除氧水箱	20m³	台	1
	电动给水泵	变频 (两用一备)	台	3
0	连续排污扩容器	/	台	2
8	定期排污扩容器	/	台	2
	疏水扩容器	1.5m ³	套	2
9	疏水水箱	20m³	套	1
	疏水泵	7.5KW	台	2
10	自动汽水取样装置	/	台	10
11	加药装置	/	台	2
12	点火排汽管路及消声器	/	台	2
12	安全阀排汽消声器	/	台	2
三、锅	炉仪表系统			
1	分散控制系统 (DCS)	/	套	1
2	远传监控系统	/	套	1
3	锅炉电器设备	/	套	1
4	烟气连续在线监测系统 CEMS	/	套	1

四、燃	料运输、破碎系统			
序号	设备名称	设备型号	单位	数量
1	输煤系统	包括振动给煤机、1#皮带机、锤式筛 破一体破碎机、2#皮带机、3#皮带机	套	1
2	炉前煤料仓	32m ³	座	2
3	输送生物质燃料系统	包括双辊给料机、4#皮带机、5#皮带机	套	1
4	炉前生物质料仓	15m ³	座	1
5	除尘装置	炉前煤仓1套、炉前生物质仓1套、 煤棚破碎系统1套、生物质料棚破碎 系统1套	套	4
五、除	灰渣系统			
1	冷渣器	1~3t/h	台	4
2	1号皮带输渣机	/	台	2
3	2 号皮带输渣机	/	台	2
4	斗式提升机	/	台	2
5	储渣库	100m³,包括插板门、气动插板门、电 动给料机及干灰卸料器	座	1
6	布袋除尘器	干灰库 1 套	套	1
7	浓相气力输送仓泵	/	台	6
8	干灰库	200m³,包括干灰卸料装置、真空释放 阀、起吊设备,库顶布袋除尘器	座	1
六、空	压系统			
1	空压机	14.3m³/min(一用一备)	台	2
2	压缩空气净化装置	14.3m³/min	套	2
3	缓冲储气罐	10m ³	台	1
4	储气罐	10m ³	台	2
七、化	2水系统			
1	除盐水系统	50t/h	套	1
八、脱	流除尘系统			
1	多管除尘+布袋除尘器	/	套	2
2	石灰石-石膏湿法烟气脱硫	4 层喷淋塔	套	2
3	石膏脱水系统	/	套	2
4	石灰石粉仓	/	座	1
5	石灰石粉仓顶除尘器	/	套	1
6	脱硫剂制备系统	包括给料机、仓顶布袋除尘器、石灰 浆箱、石灰浆液泵	套	1
九、脱	胡系统			
1	低氮燃烧器+SNCR+高温 SCR	/	套	2
2	氨储罐	30m ³	个	1
3	清水储罐	10m ³	个	1
4	氨水混合罐	5m ³	个	1
十、其	他设施			

序号	设备名称	设备型号	单位	数量
1	机械通风冷却塔	冷却水量 15m³/h	座	1
2	冷却水泵	/	台	2
3	水幕系统	输煤栈桥与转运站、主厂房连接处设 水幕,喷水强度 2 L/s.m	套	1
4	消防炮系统	生物质料棚内设置,出水量 30L/s	套	1

3.7 原辅料及燃料使用

3.7.1 原辅材料及燃料用量

本项目主要原辅材料及能源消耗情况见表 3.7-1。

序号 单位 名称 消耗量 最大贮存量 形态及贮存方式 备注 外购本地或外地煤矿 煤燃料 固体, 煤料棚 87360 3850t 1 t/a 收购周边两百公里范 围内木业加工厂边角 2 生物质燃料 t/a 37440 840t 固体,生物质料棚 料及农林废弃物,进 厂前已挑选掉金属、 塑料等掺杂的杂质 粉料,石灰石粉仓 外购 石灰石 792 43.6t t/a 4 氨水 t/a 480 20t 液体, 氨水罐 外购 脱硝工艺楼内 外购 5 催化剂(TiO₂) 2 2t t/a 0#轻柴油 液体, 撬装式油罐 6 t/a 128.65 4t 外购 液体,油桶 7 机油 t/a 0.5 0.5t 外购 电 kWh/a 市政供电 8 758.71 万 / / 水 30.91万 市政供水 t/a / /

表 3.7-1 本项目主要原辅材料及能源消耗一览表

3.7.2 燃料质量及来源

项目燃料主要采用煤炭,煤炭燃料与生物质燃料资源占比重为 7: 3。项目煤炭年消费量为 87360t,生物质燃料年消费量为 37440t,单台锅炉年供汽量 34.56 万 t(1.6MPa、230 $^{\circ}$ C)。

(1) 煤炭

本工程的设计煤种为褐煤。煤炭通过汽车运输至厂内煤料棚堆放。煤炭成分组成检测报告见附件八,煤炭组分数据见表 3.7-2。

序号	名称	单位	设计煤种	校核煤种
1	收到基碳 Car	%	62.2	44.88
2	收到基氢 Har	%	5.32	2.74
3	收到基氧 Oar	%	16.11	2.8
4	收到基氮 Nar	%	0.67	1.29

表 3.7-2 煤炭组分分析表

5	收到基硫分 Sar	%	0.13	0.39
6	收到基灰分 Aar	%	4.77	18.48
7	收到基水分 Mar	%	10.79	29.42
8	干燥无灰基挥发分 Vdaf	%	51.94	37
9	收到基汞	ug/g	0.0086	0.0062
10	收到基低位发热值 Qnet.ar	kcal/kg	5543	3927

(2) 生物质

项目生物质优先采用周边两百公里范围内木业加工厂边角料,由汽车运输到厂内生物质料棚堆放,木材生物质资源量不足时考虑采用秸秆资源作为补充。根据三明市秸秆资源量统计,三明市年秸秆可能源化利用资源量为23.99万吨,能满足本项目使用需求。

序号 名称 单位 设计燃料 校核燃料 收到基水分 Mt 1 % 52.97 15.33 空气干燥基水分 Mad % 2.30 2.10 3 空气干燥基挥发分 Vad 82.51 % 80.64 4 空气干燥基灰分 Aad 0.93 % 1.03 5 空气干燥基固定碳 FCad % 16.03 14.46 空气干燥基全硫含量 St,ad % 0.04 0.06 6 干燥基挥发分 Vd 7 % 82.54 84.28 干燥基灰分 Ad 0.95 8 % 1.05 9 干燥基固定碳 FCd % 16.41 14.77 10 干燥基高位发热量 Qgr,d 4549 kcal/kg 4686 收到基低位发热值 Qnet.ar 3771 11 1893 kcal/kg

表 3.7-3 生物质燃料组分分析表

生物质燃料成分组成检测报告见附件八,组分数据见表 3.7-3。

3.7.3 脱硫剂石灰石

本工程脱硫系统使用石灰石作为脱硫剂,年消耗量 792t,品质要求为:石灰石粉≥ 250 目,过筛率 95%, CaCO₃ 含量 85%。石灰石采用专用密封罐车通过公路运输直接送至厂内石灰粉仓。

本工程石灰石粉耗量统计表见表 3.7-4。

壮異	脱硫设计效率	a 16.3531.麻灰块	左足分叶间	石灰石粉消耗量	
装置	脱弧仪计效率	t计效率 Ca/S 设计摩尔比 年运行时间		小时耗量(t/h)	年耗量(t/a)
炉内脱硫系统	90%	2.5	8000h	0.075	600
炉外脱硫系统	50%	1.03	8000h	0.024	192

表 3.7-4 本项目石灰石消耗量统计表

3.7.4 脱硝剂氨水

本工程选用氨水(浓度 20%)作为脱硝工艺的还原剂,购自当地化工公司或销售公

司,由汽车运至厂区新建氨水罐储存,氨水年用量为480t。

脱硝还原剂储存系统按 2 台锅炉公共 1 套考虑,脱硝还原剂拟采用质量浓度为 20% 的工业氨水,设置 30m³ 氨水罐 1 座、10m³ 清水罐 1 座、5m³ 混合罐 1 座,储存容量为 1 台炉约 30 天用量,并配套卸氨泵、注液泵、配套压力液位等仪表、管道阀门及氨气监测传感器等。

本工程氨水用量统计表见表 3.7-5。

表 3.7-5 本项目氨水用量统计表

Alm 北下 太子 千七	消耗量			
物料名称	小时耗量(t/h)	日耗量(t/d)	年耗量(t/a)	
氨水	0.06	1.44	480	

3.7.5 0#轻柴油

本项目锅炉冷态启动时,采用大油枪点火系统,按投一层 4 支出力为 800kg/h 的油枪,点火至最低稳燃负荷 40%时间按 6h 计,耗油为 19.2t 左右。同时考虑启动时可能出现延迟点燃煤粉等问题,锅炉启动耗油量按 40t 考虑。

本项目还设置 2 台装载机作为辅助作业机械,装载机单台设备功率 162kW,采用 0#轻柴油作为燃料,油耗 228g/kW.h,年运行小时数 1200h,则 0#轻柴油年用量约 88.65t。

因此,项目柴油年统计用量为128.65t。

表 3.7-6 本项目 0#轻柴油消耗量统计表

耗能品种	年消耗总量	折标煤系数(当量值)	折标煤
0#轻柴油	128.65t/a	1.4571tce/t	187.46tce

项目使用的0#轻柴油油质分析按国家标准,见下表:

表 3.7-7 0#轻柴油主要成分表

序号	项目	指标
1	颜色,色号	€3.5
2	硫含量%	≤0.5
3	水分%	无痕迹
4	酸度	€5
5	10%蒸余物残碳%	€0.3
6	灰分%	≤0.01
7	运动粘度(20℃),mm²/s	3.0~8.0
8	凝点℃	0℃、-10℃
9	闪点℃	≥65℃
10	低位发热量(LHV)kcal/kg(kJ/kg)	10000 (41868)

3.8 物料平衡

3.8.1 全厂物料平衡

本项目全厂物料平衡见下表 3.8-1。

表 3.8-1 项目全厂物料平衡表 (单位: t/a)

序	进料		出料				
号	名称	数量	名称	数量	名称	数量	去向
1	煤	87360			锅炉灰渣	12810	外售
2	生物质	37440	艺》	200000	锅炉烟气、物料扬尘等损耗	10207	排放
			蒸汽	388000	锅炉排水	7992	排放
3	新水	400000			蒸发损耗	105664	损耗
				进入石膏	127	损耗	
	进料总量	524800	出料总量	524800			

3.8.2 硫物料平衡

本项目全厂硫平衡见下表 3.8-2。

表 3.8-2 项目全厂硫平衡表

序号	燃料含硫量	去向	含硫量
1	262.1697	排放烟气	25.494t/a
2	363.168t/a (煤炭年用量 87360t,基硫量 0.39%;	脱硫石膏	31t/a
3	生物质年用量 37440t,基硫量 0.06%)	灰渣	306.674t/a
4	工物 <u></u>	合计	363.168t/a

3.8.3 汞物料平衡

本项目全厂汞平衡见下表 3.8-3。

表 3.8-3 项目全厂汞平衡表

序号	燃料含汞量	去向	含汞量
1	1.5t/a	排放烟气	0.00045t/a
2	(煤炭年用量 87360t,收到基汞量	脱硫石膏	0.00105t/a
3	0.0086ug/g; 生物质年用量 37440t, 收到	灰渣	1.4985t/a
4	基汞约 0.02ug/g)	合计	1.5t/a

3.8.4 氨物料平衡

本项目全厂氨平衡见下表 3.8-4。

表 3 8-4	面日全口	- 氨平衡表
/X J.O-4	2000 中 /	* 5 *\. 1 4 * / \$

序号	用量	去向	输出数量
1		锅炉脱硝装置逸散	4.608t/a
2	96t/a	氨水储罐呼吸	0.144t/a
3	(20%浓度氨水 480t/a)	脱硝过程损耗	91.248t/a
4		合计	96t/a

3.9 工艺流程及产污环节

3.9.1 锅炉供热工艺流程

生物质燃料制备系统:本项目燃料以煤炭为主,生物质作为备用燃料。生物质利用汽车运输进厂后先经过厂区出入口的电子汽车衡进行称重,再采取自卸或者机械方式将燃料卸入生物质料棚,生物质多为块状,卸料及贮存过程不会产生扬尘。生物质直接在料棚内进行破碎后输送至锅炉,本期工程设置的生物质运输流程为:地下料坑双辊给料机→4#皮带机→5#皮带机→炉前生物质料仓。输送皮带两端安装喷水抑尘系统,同时设备进出口等产尘点设置集气罩,破碎筛分过程产生的粉尘(G3)收集后经布袋除尘器(TA003)处理后排放;粒径合格的生物质燃料由经密闭式输料栈桥由皮带运输机送入主厂房炉前生物质料仓,落入料仓时会激起少量粉尘(G4)收集后经布袋除尘器(TA004)处理后排放;最终炉前生物质料仓内的燃料经落料管由称重式皮带给料机送入炉膛内燃烧。

化水系统:本项目锅炉取水源为地表水,经过超滤装置和渗透装置,水中的钙、镁离子与树脂吸附的钠离子发生置换达到软化作用,当过滤装置中树脂接近饱和时,需进行再生处理,通入盐水对树脂进行反冲洗,此过程会产生除盐废水(W1)和废弃离子

交换树脂(S1)。软化处理后的自来水存入软水箱,通过除氧水泵将软化水送入除氧器进行除氧,除氧水储存在除氧水箱内,经给水泵升压后进入锅炉加热成具有一定压力和温度的蒸汽。

空气-烟气系统:空气经空气预热器后分一次风、二次风两部分进入炉膛,空气在炉膛内参与燃烧后形成高温烟气。分别依次经过热器、省煤器、SNCR+高温 SCR 脱硝、空气预热器、多管除尘器+旋风除尘器、引风机、石灰石-石膏湿法脱硫系统和烟囱排入大气。本项目氮氧化物控制措施采用低氮燃烧器+SNCR+高温 SCR 脱硝,SCR 是基于在金属催化剂 TiO₂ 的作用下,喷入氨(NH₃)把烟气中的 NOx 还原成 N₂和 H₂O,SCR 装置定期更换产生废催化剂(S3);氨水暂存于氨水罐内,暂存过程会挥发出氨气(G7),导入清水罐中稀释处理。锅炉运行还会产生锅炉废水(W2)。

煤-灰-渣系统: 燃煤/生物质经破碎后进入锅炉炉膛燃烧, 燃烧固体产物主要为炉渣(S2)和飞灰。烟气中飞灰经分离器除下的大颗粒物返回炉膛燃烧, 小颗粒经袋式除尘器除尘后通过气力出灰方式, 直接送入灰库暂存; 炉渣(S2)经冷渣器冷却后送至储渣库暂存, 渣库下设有干灰卸料器和事故渣管, 渣库卸出的干渣由密封罐车外运供综合利用。锅炉燃烧废气(G5)先进入布袋除尘器去除废气中大部分烟尘, 收集下的灰渣(S5)通过管道送入灰库暂存, 库顶安装布袋除尘器去除落灰扬尘(G6)和真空压力释放阀, 灰库下设有干灰卸料器和管道, 灰库卸出的灰渣由密封罐车外运供综合利用。石灰石石膏法烟气脱硫装置由石灰石作为脱硫剂, 石灰石暂存于石灰粉仓, 粉仓没配置袋式除尘器收集处理落料粉尘; 脱硫装置产生的石膏(S4)经脱水后至石膏堆料间暂存。产生的灰、渣、石膏全部进行综合利用。

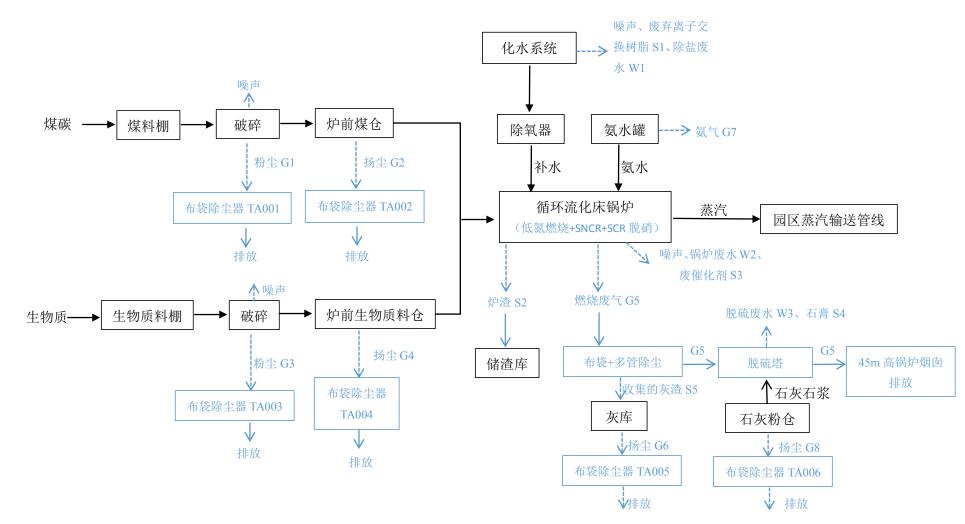


图 3.9-1 锅炉供热工艺流程及产污环节图

3.9.2 辅助设施

(1) 压缩空气系统

项目全厂用压缩空气统一考虑,包括灰库除尘、锅炉烟气脱硝及布袋除尘与脱硫系统、锅炉装置控制系统、厂区除尘装置、锅炉点火助燃油系统吹扫等。

项目空压机暂按两台 14.3m³/min 考虑,一用一备;设置两套组合式 14.3m³/min 的压缩空气净化装置,空压机缓冲储气罐 1台,成品气仪用和检修共用储气罐 1台,容积 10m³。

空压系统的流程:空压机→中间储罐→干燥机→外输储罐。

空压系统定期机检保养、会更换下废油、空油桶和含油废抹布。

(2) 冷却水系统

本项目水泵、风机等设备的冷却采用工业冷却水系统供给,设置一座机械通风冷却 塔及 2 台冷却水泵,机泵冷却水量为 15m³/h,冷却水日常循环使用,定期更换外排 W4,收集至沉淀池处理后外排入市政污水管网。

(3) 一体化净水设施

项目生产用水采用地表水,水源为项目东侧的沙溪地表水,由园区敷设原水管供至项目界区内一体化净水设备,设备排污水 W5 收集至沉淀池处理后外排入市政污水管网。

3.9.3 产污环节汇总

表 3.9-1 项目产污情况一览表

	污染物类别	序号	产污环节	主要污染物	排放方式	防治措施及排放去向
	化水系统废水	W1	反渗透除盐水	pH、COD、盐类	连续	收集回用于输煤系统冲洗用水,不外排
	锅炉污水	W2	锅炉排水、锅炉冲洗 废水	pH、COD、SS	连续	锅炉排水收集回用于调湿灰用水,不外排;锅炉定期冲洗废水收集至沉淀池处理 后达标排入市政污水管网
	脱硫废水	W3	脱硫系统排水	pH、COD、SS、总铅、总汞、 总砷、总镉、氟化物、硫化物、 石油类、挥发酚、总磷	连续	收集回用于调湿灰用水,不外排
废水	冷却系统排污水	W4	冷却系统排水	COD、SS、盐类	间歇	日常循环使用,定期更换排放,经沉淀池 处理达标后排入市政污水管网
	一体化净水设备排污水	W5	净水设备排水	COD、SS、盐类	间歇	经沉淀池处理达标后排入市政污水管网
	煤泥废水	某泥废水 W6 输煤系统等冲洗		SS	间歇	沉淀处理后回用于厂区降尘、绿化灌溉及 地面冲洗用水,不外排
	初期雨水	初期雨水 W7 煤料棚雨水		pH、SS	间歇	初期雨水收集池收集,经沉淀后进入循环 水池静置沉淀后排入市政污水管网
	生活污水	W8	职工日常活动	pH、COD、BOD5、SS、NH3-N	间歇	经厂区化粪池预处理达标后排入马铺污 水处理厂
	粉尘	G1	煤料破碎	颗粒物	间歇	产尘工位集气装置收集至除尘器 TA001 处理后排放
	粉尘	G2	炉前煤仓落料扬尘	颗粒物	间歇	经库顶除尘器 TA002 处理后排放
废气	废气 粉尘 (生物质燃料破碎	颗粒物	间歇	产尘工位集气装置收集至除尘器 TA003 处理后排放
	粉尘	G4	炉前生物质料仓落料 扬尘	颗粒物	间歇	经库顶除尘器 TA004 处理后排放
	锅炉废气		锅炉燃烧烟气	烟尘、SO ₂ 、NOx、汞及其化合	连续	采用低氮燃烧+SNCR+高温 SCR 脱硝+多

					₩m /\sqrt{sqrt}		
					物、氨		管除尘-旋风除尘+石灰石-石膏湿法脱硫
							系统处理后通过 1 根 45m 高烟囱排放
		<i>気 左</i>	G7	氨水罐	 	间歇	采用密闭水封储罐,储罐呼吸产生的氨气
	氨气 		G/	安(小) 唯	复气		导入清水罐吸收
	粉尘		G6	灰库	颗粒物	间歇	经库顶除尘器 TA005 处理后排放
		粉尘	G8	石灰粉仓	颗粒物	间歇	经库顶除尘器 TA006 处理后排放
噪声		生产噪声	N	机台运行	生产噪声	连续	基础减震、局部消音等降噪措施
		废离子交换树脂	S1	软化水处理系统	树脂材料	间歇	交由厂家回收
		炉渣	S2	锅炉运行	炉渣	间歇	· · · · · · · · · · · · · · · · · · ·
	一般	飞灰	S5	锅炉运行	灰渣	间歇	一 交由有主体资格或资质的单位回收综合 利用
	工业 脱硫石膏		S4	脱硫系统	硫酸钙	间歇	711/11
	固废	输煤系统沉淀池	S6	输煤系统	煤粉	间歇	脱水晾干后掺入锅炉燃烧
		污泥		1114771774772	7.11.04		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
固废		废滤袋	S7	布袋除尘器	滤袋	间歇	交由厂家回收
		废催化剂	S3	脱硝系统	TiO ₂	间歇	送厂商再生处理后继续利用
	危险	脱硫系统污泥	S8	脱硫系统	金属离子、硫酸钙	间歇	
		废机油	S9	设备检修	矿物油	间歇	─ - 委托有危废处置资质单位定期外运处置
		油桶	S10	设备检修	矿物油	间歇	安11.1日,因为11.1日,以下的11.
		含油废抹布	抹布 S11 设备检修		矿物油	间歇	
		生活垃圾	S13	职工活动	生活垃圾	间歇	由环卫部门定期清运

3.10 给排水工程

3.10.1 供水系统

本项目生活用水接自厂区生活给水管道,管径为 DN50,在总管上设远传计量装置,由市政供水。项目生产用水采用地表水,水源为项目东侧的沙溪地表水,由园区敷设原水管供至项目界区。建设单位正开展取水许可证办理工作。

3.10.2 排水系统

厂区排水采用生活污水、工业废水及雨水各自独立的分流制系统,生活污水经化粪 池预处理后由厂区污水管道汇集后排入市政污水管网;工业废水经收集处理达标后部分 回用于厂区用水,剩余废水外排市政污水管网,进入马铺污水处理厂处理;厂区雨水经 雨水下水道汇集后排至厂外市政雨水管网。

3.10.3 给排水平衡

(1) 生活用水

根据建设单位提供资料,拟招聘职工人数 37 人,在厂内食宿。根据《建筑给水排水设计规范(2009 年版)》,一般职工每天生活用水量按 150L/人·d,项目年工作 333 天,因此项目职工生活用水量为 0.23t/h(5.55t/d, 1848.15t/a),排污系数取 0.9,则职工生活污水量为 0.21t/h(4.995t/d, 1663.34t/a)。收集至厂区化粪池预处理达标后排入市政污水管网,进入马铺污水处理厂处理。

(2) 锅炉及化水系统用水

根据建设单位提供的项目可研资料,设置 1 套化水系统设计出力 50t/h,反渗透废水率约 26%,则化水系统用新鲜水量为 68t/h,产生约 18t/h 除盐水,收集至循环水池,回用于输送系统冲洗用水。

根据建设单位提供的初步设计方案,化水系统制备出的 50t/h 软水进入锅炉中加热成蒸汽约 48.5t/h,另外约 0.5t/h 水汽损耗,剩余 0.5t/h 锅炉废水定排,收集至循环水池,回用于除灰调湿用水。0.5t/h 锅炉冲洗废水收集至沉淀池处理后达标排入市政污水管网。

(3) 脱硫系统用水

根据建设单位提供资料,项目脱硫系统定期排水,设计排水量为 0.7t/h (16.8t/d、5600t/a),脱硫废水收集用于除渣调湿用水,不外排。

(4) 输送系统冲洗用水

项目 C1 输煤栈桥长 47.75 米、宽 3.7 米, C2 输煤栈桥长 132.2 米, 宽 6.2 米, 输送系统冲洗用水考虑冲洗面积为 1000m²,每次冲洗强度约 0.216m³/m²,不均匀系数取 1.0,每日冲洗次数为 2 次,输送系统冲所需洗水量 18t/h(432t/d,143856t/a),用水全部由化水系统除盐废水提供。约产生的冲洗废水量 9t/h(216t/d,71928t/a),收集至沉淀池沉淀后上层清水回用于厂区绿化灌溉及地面冲洗、厂区降尘等。

(5) 冷却系统用水

本项目水泵、风机等设备的冷却采用工业冷却水系统供给,设置一座机械通风冷却 塔及冷却水泵,机泵冷却水量为 15m³/h,冷却水循环使用,每日运行时长 24h,设计损 耗补水量 0.01t/h(0.24t/d、79.92t/a)。冷却系统定期排水 1.5t/h(11988t/a),收集至沉 淀池处理后达标排入市政污水管网。

(6) 煤场降尘喷洒用水

建设单位煤场喷洒降尘设计用水强度为 11.3L/m², 喷洒面积约 3000m², 不均匀系数取 1.2, 喷洒水量为 40.8t/次。每日喷洒 3 次。每日冲洗水量为 122.4t(40759.2t/a),全部为输送系统冲洗回用水。

(7) 厂区地面冲洗及绿化用水

根据建设单位提供的项目可研资料,项目浇洒道路与绿化用水设计强度为 1.5L/(m²*d),浇洒面积约 20800m²,每次冲洗时间取 1h,每日浇洒 3 次。每日浇洒水量为 93.6t(31168.8t/a),全部为输送系统冲洗回用水。

(8) 调湿灰用水

根据建设单位提供资料,项目灰料调湿用水量设计 1.2m³/h,用水来自锅炉定期排水和脱硫系统回用水,水量全部进入灰料中。

(9) 一体化净水设备用水

项目生产用水采用地表水,水源为项目东侧的沙溪地表水,由园区敷设原水管供至项目界区内一体化净水设备,设计取水量为75t/h,产生约68.71t/h清水用于工业用水,净水制备过程约产生2.5t/h蒸发损耗,剩余3.79t/h(30289.68t/a)设备排污水收集至沉淀池处理后达标排入市政污水管网。

(10) 初期雨水

项目初期雨水主要污染物为悬浮物,根据 GB50014-2006《室外排水设计规范》,初

期雨水量可由下式计算:

$$Q = q \cdot \varphi \cdot F$$

式中: O---雨水设计流量(L/s);

q---设计暴雨强度(L/s*m²);

 φ ----径流系数;根据 GB50014-2006《室外排水设计规范》表 3.2.2-1 中"各种屋面、混凝土或沥青路面径流系数为 0.85~0.95",本次评价取 0.9:

F---汇水面积(m²); 厂区汇水面积按 5000m²(0.5hm²)。

其中暴雨强度根据《福建省城市及部分县城暴雨强度公式》,沙县的暴雨强度为:

$$q = \frac{3560.956 (1 + 0.481 LgTe)}{(t + 9.975)^{0.844}}$$

式中: q---设计暴雨强度, L/(s·hm²);

Te---重现期,取1年;

t---降雨历时,取 10min;

计算可得 $q=284.42L/(s\cdot hm^2)$,初期雨水按收集下雨前 10 分钟的降雨量=284.42L/ $(s\cdot hm^2) \times 0.9 \times 0.5 m^2 \times 600 s=76.69 m^3$,因此项目初期雨水收集池容积不应小于 $77m^3$ 。

沙县地区每次降雨平均历时约 6 小时,每次降雨只收集前 10 分钟初期雨水,即全年约 2.78%的雨水作为初期雨水被收集。沙县近 20 年平均降水量 1676.9mm,则有 1676.9×2.78%=46.62mm 的雨水被收集,将项目生产区、仓库及外围的装卸区纳入收集范围,该范围面积约 5000m²,即项目每年收集约 233.1m³ 初期雨水。项目现已设置雨污切换阀,并在一端建有初期雨水收集池,平时切换阀应处于接入初期雨水收集池方位,在每次降雨 10 分钟后,再切换至雨水管网。收集的初期雨水静置后上层清液达标排入市政污水管网。

综上,本项目给排水情况见表 3.10-1 和图 3.10-1。

表 3.10-1 项目给排水情况一览表(单位: t/h)

	项目	用水	:量	损	耗量	出水量(废水+		废水量		本 业批选士占
	坝日	新鲜水	回用水	系数	损耗量	其他)	回用	其他用途	排放	废水排放去向
	生活用水	0.23	0	0.1	0.02	0.21	0	0	0.21	化粪池处理后经市政污水 管网排入马铺污水处理厂
	一体化浄水设备用水	75	0	0.3	2.5	68.71 (工业用 水)	0	68.71 (用于生 产用水)	3.79	3.79 定期排污水收集至沉 淀池处理后外排
	化水系统补充用水*	68	0	0	0	18 除盐水+50 纯水	18(回用于 输送系统)	50(出水提供 给锅炉)	0	/
生生	锅炉用水*	0	50	0.01	0.5	0.5 锅炉废水 +0.5 锅炉冲洗 废水+48.5 蒸汽	0.5 (回用于 调湿灰)	48.5(以蒸汽 形式提供给其 他单位供热)	0.5	0.5 锅炉冲洗废水收集至沉 淀池处理后外排
产用	脱硫系统补充用水*	0.7	0	0	0	0.7	0.7 (回用于 调湿灰)	0	0	/
水	输送系统冲洗用水*	0	18	0.5	9	9	9(降尘、厂 区绿化)	0	0	/
	冷却系统用水*	0.01	15	1	0.01	0	13.5	0	1.5	1.5 定期排污水收集至沉淀 池处理后外排
	煤场降尘喷洒用水*	0	5.1	1	5.1	0	0	0	0	/
	厂区地面冲洗及绿化用水 *	0	3.9	1	3.9	0	0	0	0	/
	调湿灰用水*	0	1.2	1	1.2	0	0	0	0	/
	初期雨水	0	0	0	0	76.69(收集的 前 10min 雨水)	0	0	76.69	收集的初期雨水静置后上 层清液排入市政污水管网
	合计	75.23	93.2	-	22.23	173.81	41.7	167.21	82.69	-

注: "*"表示用水由一体化净水设备提供,不再重复统计新鲜用水量

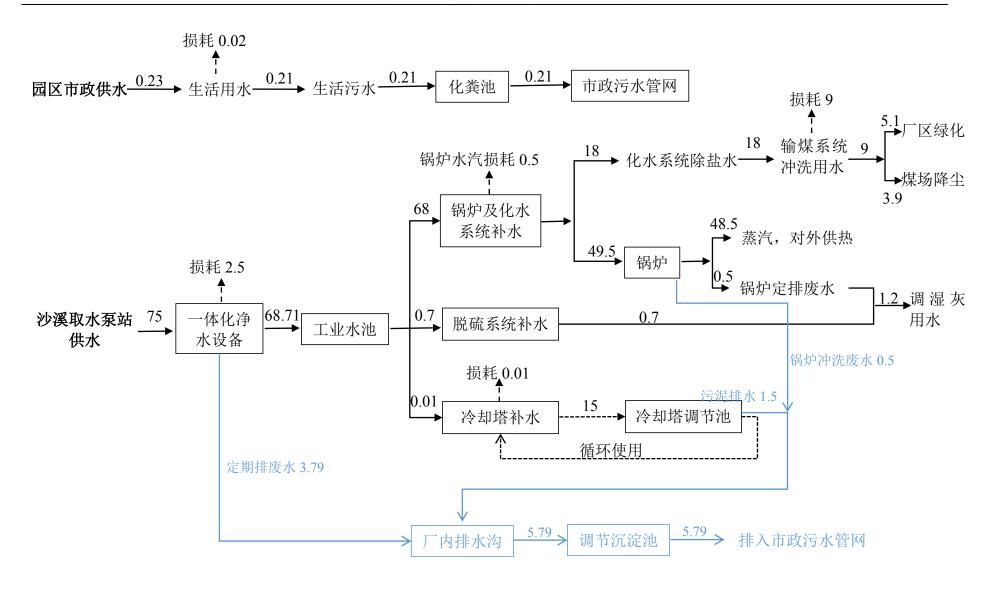


图 3.10-1 项目给排水情况图(单位: t/h)

3.11 施工期污染源分析

本项目施工期污染源主要来自厂房建设、设备安装以及蒸汽管道施工,施工期污染源包括施工废气、施工废水、施工噪声及固体废物等。

3.11.1 施工废水

施工期产生的废水主要为施工废水、生活污水。

(1) 施工废水

本项目施工废水主要是开挖和钻孔产生泥浆水,各类施工机械设备运转产生的冷却洗涤水以及施工现场清洗、建材清洗、混凝土养护、设备水压试验产生的废水等,这部分废水还有一定的泥沙和油污。

据类比监测调查,地基开挖和钻孔灌注废水主要为浆状,悬浮物浓度高达 10000~20000mg/L; 施工机械设备的冷却水和洗涤水主要成分是悬浮物和石油类,悬浮物浓度为500~3000mg/L, 石油类浓度为 20mg/L; 施工现场清洗、建材清洗、混凝土养护等废水产生量与现场管理水平关系较大,若能做到从严管理、节约用水、杜绝泄漏,则排水量可减少一半左右,此类废水主要成分为悬浮物,经隔油、沉淀处理后循环使用或用于场地洒水,不排放。

(2) 施工生活污水

不同施工阶段施工人员的数量也不同,本项目施工建设过程中同时施工人员估计最多约 15 人,施工人员平均用水量按 50L/(人•d)计,则施工人员最大生活用水量为 0.75m³/d,排污系数按 90%计,则施工人员生活污水量为 0.675m³/d。这部分污水主要污染物浓度为 SS: 250mg/L、BOD₅: 200mg/L、COD: 400mg/L、NH₃-N: 35mg/L。项目施工人员生活废水经拟建设的移动式厕所收集,委托市政清污车辆外运处置。

3.11.2 施工期废气

本项目施工期大气污染物主要是施工扬尘,其次为施工机械废气和运输车辆尾气。

- (1) 施工扬尘
- ①施工期场地内扬尘

施工期场地内扬尘主要由以下因素产生:

- A、施工场地内地表的挖掘与重整、土方和建材的运输等。
- B、干燥有风天气,运输车辆在施工场地内的道路和裸露施工面行驶。根据类比其他

类似工程的实测数据,类似土建工程现场的扬尘实地监测结果,在通常情况下,距离施工场界 200m 处 TSP 浓度约在 $0.20\sim0.50mg/m^3$ 之间。

②施工期场地外扬尘

对于被带到附近道路上的泥土所产生的扬尘量,与管理情况关系密切,一般难以准确定量估计。

(2) 施工机械废气及运输车辆废气

施工过程中使用的燃油设备(如推土机、打桩机等)以及运输车辆产生的废气具有分散、流动的特点,主要特征污染物为 CO、NOx、SO₂和烃类等,多为间断性排放。施工机械废气及车辆排放的废气主要由其所采用的燃料和设备决定,如果采用清洁型燃料,在车辆及接卸设备排气口加装废气过滤器,同时保持车辆及有关设备化油器、空气过滤器等部位的清洁,此类废气污染的影响基本可以接受。

3.11.3 施工期噪声

本项目建设施工期噪声主要来自施工机械噪声、运输车辆噪声以及施工作业噪声。

(1) 施工机械噪声

施工机械噪声由各类机械设备所造成,如挖掘机、打桩机、切割机等,多为点声源,由于施工接卸种类繁多,不同的施工阶段需要不同的机械设备,因此随着施工进入不同阶段,施工机械噪声对周围环境的影响程度也有所不同,根据有关资料调查,主要施工机械设备作业期间产生的噪声源强详见表 3.11-1。

序号	施工机械设备名称	声压级(dB(A))	排放特征	测试距离
1	挖掘机	78~85	间断	离机 5m 处
2	推土机	78~93	间断	离机 5m 处
3	搅拌机	75~88	间断	离机 5m 处
4	气锤	82~92	脉冲	离机 5m 处
5	砼破碎机	85~90	间断	离机 5m 处
6	卷扬机	75~88	间断	离机 5m 处
7	载重汽车	80~94	间断	离机 5m 处
8	压桩机	75	间断	离机 5m 处
9	钻机	87~90	连续	离机 5m 处

表 3.11-1 施工期主要设备噪声源强一览表

(2) 运输车辆噪声

运输车辆噪声属于交通噪声,车辆行驶时轮胎与路面之间的摩擦碰撞、车辆自身零部件的运转以及偶发的驾驶员行为(如鸣笛、刹车等)都是产生噪声的原因,其噪声级一般

为80~94dB(A)。

(3) 施工作业噪声

施工作业噪声主要是指施工过程中一些零星的敲打声、装卸车辆的撞击声、施工人员的吆喝声、拆装模板的撞击声等,多为瞬间噪声,其发生率与施工管理及操作人员的环境意识密切相关。这类噪声具有瞬时噪声高、在夜间传播距离远的特点,往往比较容易造成纠纷,也是施工期环境管理的难点。

3.11.4 施工期固体废物

(1) 生活垃圾

项目施工过程中施工人员约 15 人,垃圾排放系数取 0.5kg/人·d 计,则施工人员生活垃圾的最大产生量为 7.5kg/d,项目生活垃圾应集中收集后委托当地环卫部门统一及时清运处理。

(2) 建筑垃圾

施工中建筑模板、建筑材料下脚料、断残钢筋头、包装袋等, 其产生量约为 3t。

3.11.5 施工期生态影响

项目厂区位于马铺工业集中区,用地类型批准为供热用地,厂区用地已平整和铺设砂石,植被分布较少,厂区施工对植被影响较小,主要影响为地表扰动产生的水土流失。

管网施工会扰动地表,会破坏植被、造成水土流失影响。项目管网铺设沿线周边主要 分布的绿化带等人工作物,由于受人类活动干扰较重,植物种类不多。

3.12 运营期污染源分析

3.12.1 废气源强

3.12.1.1 正常工况排放

根据项目生产工艺及产污环节分析,项目运营期废气污染源主要为锅炉燃烧烟气(烟尘、二氧化硫、氮氧化物、汞及其化合物、氨)、燃料贮存及运输过程产生的粉尘(颗粒物)和氨气罐废气(氨)。

1、锅炉燃烧烟气

项目使用煤炭 70%+生物质 30%混合燃料,锅炉污染物排放量参照《污染源源强核算技术指南 锅炉》(HJ991-2018)、《排污许可证申请与核发技术规范 锅炉》(HJ953-2018)核算,采用物料衡算法核算:

(1) 基准烟气量

锅炉排污单位固体燃料燃烧所需的理论空气量按式(1)计算,基准烟气量按式(2)计算。

$$V_0 = 0.0889(C_{ar} + 0.375S_{ar}) + 0.265H_{ar} - 0.0333O_{ar}$$
 (1)

$$V_{gy} = 1.866 \times \frac{C_{ar} + 0.375S_{ar}}{100} + 0.79V_0 + 0.8 \times \frac{N_{ar}}{100} + (\alpha - 1)V_0$$
 (2)

式中: Vo---理论空气量,标立方米/千克;

Vgv---基准烟气量,标立方米/千克;

Car---收到基碳含量,百分比;

Sar---收到基硫含量,百分比;

Nar---收到基氮含量, 百分比:

Har---收到基氢含量, 百分比:

Oar---收到基氧含量,百分比;

α---过量空气系数,燃料燃烧时实际空气供给量与理论空气需要量之比值,燃 煤锅炉和燃生物质锅炉的过量空气系数为 1.75,对应基准氧含量分别为 9%、9%。

根据前文表 3.7-4: 项目煤质组分分析表,使用的煤炭计算出的基准烟气量结果如下表 3.12.1-1:

根据附件八:燃料质检报告,项目使用的生物质燃料质检报告无 Car、Sar等收到基元素组成数据,燃生物质基准烟气量参照《排污许可证申请与核发技术规范 锅炉》(HJ953-2018)中表 5 经验公式计算法 (3) 估算:

Vgy=0.385Qnet,ar+0.788

式中: Vgy---固体/液体燃料收到基低位发热量(MJ/kg)。

收到基 收到基 收到基 收到基 收到基 过量 理论空 基准烟 空气 燃料 硫含量 氢含量 碳含量 氮含量 氧含量 气量 V₀ 气量 Vgy 系数α Car Sar Nar Har Oar 21.488 6.407 设计煤种 62.2% 0.13% 0.67% 5.32% 16.11% 1.75 Nm³/kg Nm^3/kg 煤炭 15.551 4.636 校核煤种 44.88% 0.39% 1.29% 2.74% 2.8% 1.75 Nm³/kg Nm³/kg 基准烟 燃料 收到基低位发热量 Qnet,ar 气量 V_{gy} 3.833 设计燃料 7.91MJ/kg Nm^3/kg 生物质 6.859 校核燃料 15.77MJ/kg Nm³/kg

表 3.12.1-1 基准烟气量计算一览表

(2) 烟尘排放量

颗粒物实际排放量核算根据《污染源源强核算技术指南 锅炉》(HJ 991-2018)里物料衡算法公式计算,计算公式如下:

$$E_{A} = \frac{R \times \frac{A_{ar}}{100} \times \frac{d_{fh}}{100} \times \left(1 - \frac{\eta_{c}}{100}\right)}{1 - \frac{C_{fh}}{100}}$$
(3)

式中: EA---核算时段内颗粒物(烟尘)的排放量, t:

R---核算时段内锅炉燃料耗量, t:

Aar---收到基灰分的质量分数,%;

dfh---锅炉烟气带出的飞灰份额,%;

η c---综合除尘效率, %:

Cfh.--飞灰中的可燃物含量,%。

本项目两台锅炉满负荷运行时年使用煤炭燃料 87360t、生物质燃料 37440t; 其中煤炭收到基灰分设计煤种 4.77%、校核煤种 18.48%,设计生物质燃料 1.05%、校核生物质

燃料 0.95%;烟气带出的飞灰份额参考《污染源源强核算技术指南 锅炉》表 B.2,流化床炉烟气带出飞灰份额在 40%~60%之间,本次评价取 50%;根据《污染源源强核算技术指南 锅炉》表 B.6,干式除尘效率可达 99~99.9%,本次采用多管除尘+布袋组合式除尘器,除尘效率取 99.9%,项目同时配备了石灰石-石膏湿法脱硫设施,可协同脱除 50%~70%的颗粒物,一般情况取 50%,故本项目旋风+布袋除尘+石灰石-石膏湿法脱硫综合除尘效率为 99.95%;飞灰中可燃物含量根据《工业锅炉经济运行》(GB/T17954-2007)表5 数据,使用 I 类烟煤功率大于 8.1t/h 锅炉灰渣可燃物含量不大于 12%,本次评价取值 12%。

因此, 计算可得项目产生的烟尘排放量分别为: 设计燃料 1.296t/a、校核燃料 4.687t/a。

(3) 二氧化硫排放量

二氧化硫实际排放量核算根据《污染源源强核算技术指南 锅炉》(HJ 991-2018)里物料衡算法公式计算,计算公式如下:

$$Eso_2 = 2R \times \frac{S_{ar}}{100} \times \left(1 - \frac{q_4}{100}\right) \times \left(1 - \frac{\eta_s}{100}\right) \times K \tag{4}$$

式中: E_{so2}---核算时段内二氧化硫的排放量, t;

R---核算时段内锅炉燃料耗量, t;

 S_{ar} ---收到基硫的质量分数,%;

q4---锅炉机械不完全燃烧热损失,%;

η s---脱硫效率, %;

K---燃料中的硫燃烧后氧化成二氧化硫的份额,量纲一的量。

本项目两台锅炉满负荷运行时年使用煤炭燃料 87360t、生物质燃料 37440t; 其中设计煤炭中收到基硫质量分数为 0.13%、校核煤炭中收到基硫质量分数为 0.39%,设计生物质燃料中收到基硫质量分数为 0.04%、校核生物质燃料中收到基硫质量分数为 0.06%;本项目设计锅炉热效率>90%,故不完全燃烧热损失取 10%;根据《污染源源强核算技术指南锅炉》表 B.7,石灰石-石膏法脱硫效率 90~99%,本次评价取 95%;流化床炉(未加固硫剂) K 值一般在 0.75~0.8 之间,本次评价取 0.78。

因此,计算可得项目产生的二氧化硫排放量分别为:设计燃料 9.023t/a、校核燃料 25.494t/a。

(4) 氮氧化物排放量

氮氧化物实际排放量核算根据《污染源源强核算技术指南 锅炉》(HJ 991-2018)里 物料衡算法公式计算,计算公式如下:

$$E_{NOx} = \rho_{NOx} \times Q \times \left(1 - \frac{\eta_{NOx}}{100}\right) \times 10^{-9}$$
 (5)

式中: E_{NOx}---核算时段内氮氧化物的排放量, t;

p_{NOx}---锅炉炉膛出口氮氧化物质量浓度, mg/m³;

O---核算时段内标态干烟气排放量, m³;

η_{NOx}---脱硝效率,%。

根据《污染源源强核算技术指南 锅炉》表 B.4,燃煤流化床炉炉膛出口氮氧化物浓度一般在 $100\sim300$ mg/m³,本次评价取值 200mg/m³,根据上述表 3.12.1-1 烟气量计算结合燃料用量折算出设计燃料标干烟气排放量为 20.21×10^8 m³/a(=21.488Nm³/kg×87360t/a 煤炭+3.833Nm³/kg×37440t/a 生物质),校核燃料标干烟气排放量为 16.16×10^8 m³/a

(=15.551Nm³/kg×87360t/a 煤炭+6.859Nm³/kg×37440t/a 生物质);根据《污染源源强核算技术指南 锅炉》表 B.5 以及据《排放源统计调查产排污核算方法和系数手册-锅炉产排污量核算系数手册》,SNCR+SCR 联合脱硝效率可达 80%。

因此, 计算可得项目产生的氮氧化物排放量分别为: 设计燃料 80.84t/a、校核燃料 64.64t/a。

(5) 汞及其化合物排放量

汞及其化合物实际排放量核算根据《污染源源强核算技术指南 锅炉》(HJ 991-2018) 里物料衡算法公式计算,计算公式如下:

$$E_{Hg} = R \times m_{Hgar} \times \left(1 - \frac{\eta_{Hg}}{100}\right) \times 10^{-6}$$
 (6)

式中: E_{Hg}---核算时段内汞及其化合物的排放量, t;

R---核算时段内锅炉燃料耗量, t;

m_{Hgar}---收到基汞的含量, ug/g;

п нд--- 汞的协同脱除效率,%。

本项目两台锅炉满负荷运行时年使用煤炭燃料 87360t、生物质燃料 37440t;设计煤炭中收到基汞的含量 0.0086ug/g、校核煤炭中收到基汞的含量 0.0062ug/g,生物质中收到

基汞的含量引用《中国农村地区生物质燃料燃烧的汞排放研究》(魏文 北京大学)取值 0.02ug/g;根据《污染源源强核算技术指南 锅炉》附录 B.3,烟气 SCR 脱硝、除尘和湿法脱硫等污染防治设施对汞及其化合物具有协同脱除效果,脱除效率约 70%。

因此,计算可得项目产生的汞及其化合物排放量分别为:设计燃料 0.00045、校核燃料 0.00038t/a。

(6) 锅炉脱硝装置氨气逸散

参考《工业锅炉污染防治可行技术指南》(HJ 1178-2021),新建项目采用 SNCR-SCR 联合法脱硝技术宜控制氨逃逸质量浓度低于 2.28 mg/m³。

综上,本项目锅炉烟气各项污染物排放情况汇总见表 3.12.1-2。

项目 设计燃料 单位 校核燃料 排放口情况 2 台锅炉合并一根烟囱 高度 45 m 烟囱 2.2 内径 m $^{\circ}$ C 排烟温度 60 干烟气量 m^3/h 252625 202000 排放量 t/a 1.296 4.687 排放速率 烟尘 0.162 0.586 kg/h 排放浓度 mg/m^3 0.641 2.90 9.023 排放量 t/a 25.494 二氧化硫 排放速率 kg/h 1.128 3.187 排放浓度 mg/m^3 4.465 15.776 排放量 80.84 64.64 烟囱出口污 t/a 染物排放情 氮氧化物 排放速率 10.105 8.08 kg/h 况 排放浓度 mg/m^3 40 40 排放量 t/a 0.00045 0.00038 汞及其化合物 排放速率 kg/h 5.6×10^{-5} 4.75×10^{-5} 排放浓度 mg/m^3 0.0002 0.0002 排放量 t/a 4.608 3.684 排放速率 氨 kg/h 0.576 0.461 排放浓度 mg/m^3 2.28 2.28

表 3.12.1-2 锅炉烟气污染物排放情况

根据《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号),每小时 35(含)-65 蒸吨燃煤锅炉超低排放标准为烟尘、二氧化硫、氮氧化物排放浓度分别不高于 10、35、50 毫克/立方米。本项目锅炉产生的各污染物排放浓度分别为:烟尘(设计燃料 0.641mg/m³、校核燃料 2.90mg/m³)、SO₂ (设计燃料 4.465mg/m³、校核燃料 15.776mg/m³)、NOx (设计燃料 40mg/m³、校核燃料 40mg/m³),均满足达标排放的要

求。

2、燃料贮存及运输粉尘

本项目燃料贮存及运输过程产生的粉尘分别为炉前煤仓扬尘、煤炭破碎粉尘、炉前 生物质料仓扬尘、生物质破碎粉尘、灰库扬尘和石灰石粉仓扬尘。

(1) 炉前煤仓扬尘

本项目锅炉设置 2 个有效容积各 32m³ 炉前煤仓,上料过程产生粉尘。根据《逸散性工业粉尘控制技术》中的经验估算,煤加工过程逸散尘—送料上堆的排放因子为 0.04kg/t(装料)。在炉前煤仓进料口上方设置集气罩,煤仓整体为封闭式,考虑集气罩收集效率为 80%,集气罩收集的粉尘汇总至布袋除尘器 TA002 处理后由 15 米排气筒 DA002 外排,风机设计风量为 8000m³/h,布袋除尘效率取 90%。

项目炉前煤仓扬尘产生情况见下表 3.12.1-3。

产污环节	燃料类型	用量 (t/a)	产尘量 (t/a)	治理措施	排放口	有组织排放 量(t/a)	无组织排 放量(t/a)
煤仓扬尘	煤炭	87360	3.494	布袋除尘设 施 TA002	1根15m排 气筒 DA002	0.280	0.699

表 3.12.1-3 炉前煤仓扬尘产排情况

(2) 煤炭破碎粉尘

项目采用一级破碎对原煤进行破碎加工成煤粒,根据《逸散性工业粉尘控制技术》中的经验估算,二级破碎和筛选煤加工过程逸散尘的排放因子为0.08kg/t(破碎和过筛料)。在破碎机台及输料皮带上设置集气罩,考虑集气罩收集效率为80%,集气罩收集的粉尘经布袋除尘器 TA001 处理后由1根15米排气筒 DA001外排,风机设计风量为8000m³/h,布袋除尘效率取90%;同时破碎区以及输送带两端设置喷淋抑尘装置,无组织粉尘洒水控制效率保守取50%。

项目煤炭破碎粉尘产生情况见下表 3.12.1-4。

产污环节	燃料类型	用量 (t/a)	产尘量 (t/a)	治理措施	排放口	有组织排 放量(t/a)	无组织排放 量(t/a)
煤炭破碎	煤炭	87360	6.989	布袋除尘	1根15m排	0.559	0.699
床火拟件	床火	8/300	0.989	设施 TA001	气筒 DA001	0.339	(洒水抑尘)

表 3.12.1-4 煤炭破碎粉尘产排情况

(3) 炉前生物质料仓扬尘

本项目锅炉设置 1 个有效容积 15m³ 炉前生物质料仓,上料过程产生粉尘。同样参照《逸散性工业粉尘控制技术》中的经验估算,物料加工过程逸散尘—送料上堆的排放因

子为 0.04kg/t(装料)。在炉前生物质料仓进料口上方设置集气罩,仓体整体为封闭式,考虑集气罩收集效率为 80%,集气罩收集的粉尘经布袋除尘器 TA004 处理后由 15 米排气筒 DA004 外排,风机设计风量为 8000m³/h,布袋除尘效率取 90%。

项目炉前生物质料仓扬尘产生情况见下表 3.12.1-5。

用量 产尘量 有组织排 无组织排放 产污环节 燃料类型 治理措施 排放口 放量(t/a) 量 (t/a) (t/a)(t/a)1根15m排 生物质料 布袋除尘 生物质 37440 1.498 0.120 0.30 气筒 DA004 设施 TA004 仓扬尘

表 3.12.1-5 炉前生物质料仓扬尘产排情况

(4) 生物质破碎粉尘

生物质破碎同样参照《逸散性工业粉尘控制技术》中的经验估算,二级破碎和筛选加工过程逸散尘的排放因子为 0.08kg/t(破碎和过筛料)。在破碎机台及输料皮带上设置集气罩,考虑集气罩收集效率为 80%,集气罩收集的粉尘经布袋除尘器 TA003 处理后由1 根 15 米排气筒 DA003 外排,风机设计风量为 8000m³/h,布袋除尘效率取 90%;同时破碎区以及输送带两端设置喷淋抑尘装置,无组织粉尘洒水控制效率保守取 50%。

项目生物质燃料破碎粉尘产生情况见下表 3.12.1-6。

产污环节	燃料类型	用量 (t/a)	产尘量 (t/a)	治理措施	排放口	有组织排 放量(t/a)	无组织排放 量(t/a)
生物质燃	生物质	27440	2.005	布袋除尘	1根15m排	0.240	0.30
料破碎	上初灰	37440	2.995	设施 TA003	气筒 DA003	0.240	(洒水抑尘)

表 3.12.1-6 生物质破碎粉尘产排情况

(5) 灰库扬尘

锅炉燃烧灰渣产生量计算根据《污染源源强核算技术指南 锅炉》(HJ 991-2018)里燃煤、燃生物质锅炉灰渣产生量计算公式:

$$E_{hz} = R \times \left(\frac{A_{ar}}{100} + \frac{q_4 \times Q_{\text{net,ar}}}{100 \times 33870} \right)$$
 (7)

式中: E_{hz} ---核算时段内灰渣产生量,t; 根据飞灰份额 d_{fh} 可分别核算飞灰、炉渣产生量(前文评价 d_{fh} 取值 50%);

R---核算时段内锅炉燃料耗量, t;

A_a---收到基灰分的质量分数,%;

q4---锅炉机械不完全燃烧热损失,%;

Q_{net ar}---收到基低位发热量, KJ/kg。

项目使用煤炭燃料 87360t+生物质燃料 37440t,设计煤炭收到基灰分质量分数为4.77%、收到基低位发热量 5543kcal/kg(折合为 23192KJ/kg),设计生物质燃料收到基灰分质量分数为 1.05%、收到基低位发热量 1893kcal/kg(折合为 7920KJ/kg),锅炉设计热损失 10%。计算可得锅炉产生的灰渣量为 12810t/a。根据建设单位提供的初设方案估算,炉渣与飞灰占比为 1.5: 1,则产生的飞灰量 5124t/a、炉渣量 7686t/a。

飞灰输送至灰库暂存,输送过程全程保持密闭,主要为灰库装卸时会产生少量粉尘, 灰库粉尘采用《固体物料堆存颗粒物产排污核算系数手册》公式计算:

$$P = ZC_y + FC_y = \{N_C \times D \times (a/b) + 2 \times E_f \times S\} \times 10^{-3}$$
(8)

式中: P——指颗粒物产生量(单位: 吨);

ZCv——指装卸扬尘产生量(单位:吨);

FC_v——指风蚀扬尘产生量(单位:吨);

Nc——指年物料运载车次(单位:车);本项目暂定飞灰约641车次/年;

D——指单车平均运载量(单位:吨/车);本项目取8吨/车;

a/b—指装卸扬尘概化系数(单位: 千克/吨);根据《固体物料堆存颗粒物产排污核算系数手册》附录,a 指各省风速概化系数,福建省为0.0009,b 指物料含水率概化系数,参考烟道灰取0.0092;

E——指堆场风蚀扬尘概化系数,参考烟道灰取 74.0695 千克/平方米;

S——指堆场占地面积,灰库面积约 50.24m²(内径 8m)。

有组织 产污 **飞灰量** 产尘量 无组织排 收集效率 排放量 治理措施 处理效率 排放口 环节 放量(t/a) (t/a)(t/a)(t/a)布袋除尘 1根 15m 灰库 排气筒 7.94 80% 设施 90% 0.635 5124 1.588 扬尘 TA006 **DA006**

表 3.12.1-7 灰库扬尘产排情况

(6) 石灰石粉仓扬尘

本项目设置 1 座钢制石灰石粉仓,占地面积约 5m²,石灰石年用量 792t,石灰石粉装卸过程产生的粉尘同样参照《固体物料堆存颗粒物产排污核算系数手册》公式计算。

Nc 取值 99 车次/年, D 单车运载量取值 8 吨/车, a 取值 0.0009, b 按石灰石产品取值 0.0017, Ef 按石灰石产品取值 3.6062。

表 3.12.1-8 石灰石粉仓扬尘产排情况

产污环节	石灰石粉 用量(t/a)	产尘量 (t/a)	治理措施	排放口	有组织排放 量(t/a)	无组织排放量 (t/a)
石灰石粉仓 扬尘	792	0.455	布袋除尘设 施 TA007	1根15m排气 筒DA007	0.036	0.091

3、储罐氨气

本项目建设 1 个 30m³ 的氨水储罐,20%的氨水年为480t,氨水使用过程中会逸散引起氨气无组织排放。氨水罐采用水封措施,采取措施后,无组织逸散量设计为0.03%。按氨水使用量的0.03%估算,则氨气无组织排放量为0.144t/a。

综上,本项目废气各项污染物具体产排情况汇总见表 3.12.1-9。

表 3.12.1-9 项目有组织废气污染源强核算结果及相关参数一览表

							污染物产生		治理措施	<u> </u>		沪	。 异染物排放				「筒参数	数	
装置	污染源	污染物	核算方法	燃料类型	烟气量 (m³/h)	产生量 (t/a)	产生速率 (kg/h)	产生浓度 (mg/m³)	工艺	效 率%	预测排放 量(t/a)	预测排放 速率 (kg/h)	预测排放 浓度 (mg/m³)	允许排放 浓度 (mg/m³)	允许排 放量 (t/a)	名称	高 度 (m)	内径 (m)	排放 时长 (h)
		mrtsle), d L		设计燃料	252625	2592	324	1283	旋风+布袋+		1.296	0.162	0.641	10	20.21				
		颗粒物		校核燃料	202000	9374	1172	5800	脱硫湿法综 合除尘	99.95	4.687	0.586	2.90	10	16.16				
		0.2		设计燃料	252625	180	23	112	石灰石-石膏	95	9.023	1.128	4.465	35	70.735				Į l
	<i>F</i> □ <i>L</i> ≥	SO_2	物料	校核燃料	202000	510	64	316	湿法	95	25.494	3.187	15.776	35	56.56	다. 소리 미4			Į l
2 台 40t/h 锅炉	锅炉 烟囱	NOx	衡算	设计燃料	252625	404	51	200	SNCR/SCR	80	80.84	10.105	40	50	101.05	锅炉烟 囱	45	2.2	8000
	ᄴമ	NOX	法	校核燃料	202000	323	40	200	耦合式脱硝	80	64.64	8.08	40	50	80.8	凶			Į l
		汞及其化合物		设计燃料	252625	0.0015	0.0002	0.0007	协同脱除	70	0.00045	5.6×10 ⁻⁵	0.0002	0.05	0.101				ı
		水及共化日初		校核燃料	202000	0.0013	0.0002	0.0008		/0	0.00038	4.75×10 ⁻⁵	0.0002	0.05	0.081				ı
		NH_3		设计燃料	252625	4.608	0.576	2.28	,	/	4.608	0.576	2.28	2.28	4.608				Į l
		N113		校核燃料	202000	3.684	0.461	2.28	/	/	3.684	0.461	2.28	2.28	3.684				ı
破碎楼	煤炭 破碎	颗粒物		/	8000	5.59	0.699	87.34	布袋除尘	90	0.559	0.070	8.73	120	/	DA001	15	0.5	8000
炉前煤仓	上料	颗粒物	产污	/	8000	2.80	0.350	43.75	布袋除尘	90	0.280	0.035	4.38	120	/	DA002	15	0.5	8000
生物质料棚	破碎	颗粒物	系数	/	8000	2.40	0.30	37.50	布袋除尘	90	0.240	0.030	3.75	120	/	DA003	15	0.5	8000
炉前生物质仓	上料	颗粒物	法	/	8000	1.20	0.150	18.75	布袋除尘	90	0.120	0.015	1.88	120	/	DA004	15	0.5	8000
灰库	卸料	颗粒物		/	8000	6.35	0.794	99.22	布袋除尘	90	0.635	0.079	9.92	120	/	DA005	15	0.5	8000
石灰石粉仓	上料	颗粒物		/	8000	0.455	0.06	7.11	布袋除尘	90	0.036	0.005	0.56	120	/	DA006	15	0.5	8000
		颗粒物(锅炉)	/	/	/	/	/	/	/	/	4687	/	/	/	20.21	/	/	/	/
		SO_2	/	/	/	/	/	/	/	/	25.494	/	/	/	70.735	/	/	/	/
		NOx	/	/	/	/	/	/	/	/	80.84	/	/	/	101.05	/	/	/	/
合计排放量	皇	汞及其化合物	/	/	/	/	/	/	/	/	0.00045	/	/	/	0.101	/	/	/	/
		氨	/	/	/	/	/	/	/	/	4.608	/	/	/	4.608	/	/	/	/
		颗粒物(工艺 粉尘)	/	/	/	/	/	/	/	/	1.87	/	/	/	/	/	/	/	/

表 3.12.1-10 项目无组织废气排放情况一览表

	污染源	污染物	面积	高度	污染物	排放	排放时长(h)	
发 且	15 欠 源	75条物	山 (地)	同尺	排放量(t/a)	排放速率(kg/h)	1 排放的 太(11)	
破碎楼	煤炭运输、贮存、破碎	颗粒物	200m ²	5m	0.699	0.087	8000	
炉前煤仓	煤炭上料	颗粒物	64m ²	5m	0.699	0.087	8000	
生物质料棚	生物质运输、贮存、破碎	颗粒物	1404m²	5m	0.30	0.038	8000	
炉前生物质仓	生物质上料	颗粒物	6m ²	5m	0.30	0.038	8000	
灰库	飞灰卸料	颗粒物	15m ²	8m	1.588	0.199	8000	
石灰石粉仓	石灰石上料	颗粒物	5m ²	5m	0.091	0.011	8000	
储罐	储罐呼吸	氨	15m ²	2m	0.144	0.018	8000	

3.12.1.2 非正常工况排放

本项目设定脱硝、除尘和脱硫系统未能及时投运或故障情况下的锅炉烟气非正常工况排放。

(1) 情景一

点火启动、停炉熄火导致脱硝系统不能投运,或低负荷及设备故障情况下导致脱硝系统不能投运, η_{NOx} 按 0%考虑,参考《污染源源强核算技术指南 火电》(HJ 888-2018)附录 A 表 A.4 中循环流化床锅炉启停阶段 NOx 产生浓度约 700mg/m³,超标 14 倍(排放浓度标准限值 50mg/m³)。

(2) 情景二

本项目锅炉配备了旋风+袋式除尘器,除尘器可能发生的非正常工况为部分布袋破损。 每套布袋除尘系统配置多个除尘仓室,并在设计时留了余量。若发生布袋破裂等事故时, 能在线关闭受损布袋所在仓室,可避免发生烟尘事故排放,且烟气尾部设置了石灰石-石 膏湿法脱硫系统,具有一定的除尘效果。本项目烟尘非正常工况主要考虑袋式除尘器部 分布袋破损后,总除尘效率下降,滤袋破损期间可按下式计算烟尘排放增加量:

$$\Delta M_A = \rho_A \times S \times \nu$$

式中, ΔM_{A} ---滤袋破损后增加的烟尘排放量,g/s;

ρ_d---原烟气含尘质量浓度, g/m³;

S---滤袋破口面积, m²:

v --- 滤袋破洞处烟气流速, m/s, 取 25m/s。

按布袋破袋面积 0.2m² 核算,则经除尘器及石灰石-石膏湿法脱硫系统除尘后的烟尘 总排放浓度将达到 26.26mg/m³(以煤炭燃料计),超标 2.6 倍(排放浓度标准限值 10mg/m³)。

(3) 情景三

本项目1台锅炉烟气接入一台脱硫塔,不设烟气旁路系统,因此不可能发生未经脱硫处理的烟气直接外排现象。当脱硫设备故障造成喷淋层减少,导致脱硫效率下降、污染物排放不能达标,该锅炉燃烧系统立即停用,采用备用锅炉,同时对故障系统进行检修。

脱硫设施故障导致的非正常排放按下式计算:

$$\eta_{\rm s} = 1 - \prod_{\rm l}^{\rm i} \left(1 - \frac{\eta_{\rm i}}{100} \right)$$

式中, ns---脱硫效率, %;

- I---脱硫塔运行喷淋层数:
- i---第i喷淋层脱硫效率,%。

本项目 1 套脱硫塔拟设置 4 层喷淋层,考虑 2 层喷淋层故障,另 2 层正常运行,则 1 套脱硫效率由 95%降至 47.5%,最终 SO_2 排放浓度约 165.9 mg/m^3 ,超标 4.74 倍(排放浓度标准限值 $35mg/m^3$)。

综上,本项目非正常工况排放情况见表 2.12.1-11。

污染物排放 允许排放 排放速率 装置 污染源 污染物 燃料类型 烟气量 排放浓度 浓度限值 排放时长 (m^3/h) (kg/h) (mg/m^3) (mg/m^3) 设计燃料 252625 6.63 26.26 10 2h 颗粒物 校核燃料 202000 5.30 26.26 10 2h 2 台 烟囱非 设计燃料 252625 41.91 165.9 35 2h 正常工 40t/h SO_2 校核燃料 202000 33.51 165.9 35 2h 锅炉 况排放 设计燃料 252625 176.84 700 50 2h NOx 校核燃料 202000 141.4 700 50 2h

表 3.12.1-11 项目非正常工况排放情况一览表

3.12.1.3 区域污染物变化情况

①9家供热企业大气污染物排放量

本项目建成后将替代园区现有9家供热企业燃煤锅炉/导热油炉或生物质锅炉,根据调查,大部分企业生产年限较久,早期环评及其批复缺少锅炉废气污染物总量控制指标,只能根据环评统计或排污许可证等对排放量进行核算,9家供热企业替代源污染物排放见表 3.12.1-12。

序号	单位名称	烟尘排放	SO ₂ 排放	NOx 排放	数据来源			
		量(t/a)	量(t/a)	量(t/a)	狄加 水(水			
1	福建沙县青州日化有限公司	0.3340	0.870	1.6930	环评报告			
2	福建省沙县德利纸业有限公司	3.6845	24.5632	24.5632	排污许可证			
3	福建楚兴药业有限公司	0.21	0.21	1.645	环评报告			
4	福建铭峰高分子有限公司	1.0315	2.29	4.59	环评报告			
5	福建民祥化工新材料有限公司	6.1	33.6	23.5	排污许可证			
	(福建巴汉夫科技有限公司)							
6	福建三明合力新材料科技有限公司	17.5824	43.6097	87.2189	排污许可证			
7	福建中闽大地纳米新材料有限公司	1.7915	1.2528	11.7137	排污许可证			
8	沙县盛春纸业有限公司	5	18	14.4	排污许可证			
9	福建远润生物科技有限公司	0.0560	0.070	0.5555	环评报告			

表 3.12.1-12 9 家供热企业替代源污染物排放情况一览表

合计	35.7899	124.4657	169.8793	-
----	---------	----------	----------	---

②区域污染物变化情况

根据单台锅炉烟气量,核算本期工程污染物排放总量,则实施本次集中供热项目后, 区域大气污染物变化情况见表 3.12.1-13。

表 3.12.1-13 本项目实施后区域大气污染物变化情况一览表

	项目	颗粒物(t/a)	SO ₂ (t/a)	NOx (t/a)
集中供热工程	集中供热锅炉排放量	20.21	70.735	101.05
实施后变化情况	替代锅炉排放量	35.7899	124.4657	169.8793
大旭 一文化目仇	变化量	-15.5799	-53.7307	-68.8293

3.12.2 废水源强

本项目运营期废水包括生活污水和生产废水。

(1) 生活污水

根据项目给排水平衡分析可知,本项目新增职工产生的生活污水量为 1663.34t/a (4.995t/d) ,主要污染物为 pH、COD、BOD₅、SS、NH₃-N,收集至厂区化粪池预处理 达标后排入市政污水管网,进入马铺污水处理厂处理。

根据生态环境部制定的《排放源统计调查产排污核算方法和系数手册》(2021年 6月)生活源产排污核算方法和系数手册表 1-1 城镇生活源水污染物产生系数,福建省属于四区,城镇生活污水中各污染物浓度大致为 COD: 340mg/L、NH₃-N: 32.6mg/L; BOD₅、SS 参照原国家环境保护总局影响评价工程师职业资格登记管理办公室编写的《社会区域类环境影响评价》教材中推荐的生活污水水质),浓度均为 200mg/L。

项目生活污水采用化粪池进行处理,化粪池处理效率参照《建设项目环境影响审批登记表》填表说明中推荐的参数和刘毅梁发表的《武汉市住宅小区化粪池污染物去除效果调查与分析》中得出的结论,COD、BOD5、SS、NH3-N 去除效率分别为 15%、11%、47%、4%。则项目生活污水处理后出水浓度为 COD: 289mg/L、BOD5: 178mg/L、SS: 106mg/L、NH3-N: 31mg/L,出水浓度可达《污水综合排放标准》(GB8978-1996)三级标准,氨氮执行《污水排入城镇下水道水质标准》(CJ343-2010)B 等级排放标准以及马铺污水处理厂进水水质要求。

(2) 生产废水

①锅炉及化水系统废水

项目化水系统除盐水 18t/h(143856t/a),收集至循环水池,全部回用于输送系统冲洗

用水; 0.5t/h(3996t/a)锅炉废水定排,收集至循环水池,全部回用于除灰调湿用水, 0.5t/h(3996t/a)锅炉冲洗废水收集至沉淀池处理后外排入市政污水管网。锅炉排污水及反冲洗废水主要含有 COD、SS 和盐类,根据《排放源统计调查产排污核算方法和系数手册》-4430工业锅炉(热力供应)行业系数手册中的燃煤蒸汽锅炉废水中 COD 产污系数为 90 克/吨-原料(燃料合计用量 124800t/a),采用物理+化学处理技术对 COD 处理效率可达 66%,因此锅炉及化水系统废水中 COD 浓度为 74mg/L,SS 浓度结合《工业锅炉污染防治可行技术指南》(HJ1178-2021)表 2 中主要污染物排放水平情况取值 60mg/L。

②脱硫系统废水

项目脱硫系统废水 0.7t/h (5600t/a) 收集用于除渣调湿用水。脱硫系统废水水质呈弱酸性,主要污染因子为 pH、COD、SS、盐类及微量重金属。根据同类企业类比调查,水质约为 pH5~6、COD \leq 2000mg/L、SS \leq 5000mg/L、氟化物 \leq 210mg/L,硫化物 \leq 1mg/L、总铅 \leq 1mg/L、总录 \leq 0.05mg/L、总砷 \leq 0.5mg/L、总镉 \leq 0.1mg/L、石油类 \leq 85mg/L、TP \leq 1mg/L、挥发酚 \leq 0.1mg/L。

③输送系统冲洗废水

项目煤炭和生物质燃料输送系统冲洗废水量为 9t/h(71928t/a),主要污染物为 SS,收集至沉淀池沉淀后上层清水回用于厂区绿化灌溉及地面冲洗、厂区降尘等。根据同类企业类比调查(林甸县城区热电联产项目竣工环境保护验收监测报告,同样为燃煤锅炉集中供热项目,含煤废水产污环节同样为输送系统冲洗废水),含煤废水中 SS 产生浓度大致为 237mg/L,沉淀池对 SS 处理效率约 50%。

④冷却系统定期排水

冷却系统定期排水 1.5t/h(11988t/a),主要污染物为 COD、SS,收集至沉淀池处理后外排入市政污水管网。根据《工业循环冷却水处理设计规范》(GB/T50050-2017)中对间冷开式系统循环冷却水系统相关要求,项目冷却系统定排水中主要污染物及其产生浓度分别为 COD_{Cr}: 60mg/L、SS: 10mg/L。

⑤一体化净水设备废水

一体化净水设备约产生 3.79t/h(30289.68t/a)排污水,主要污染物为 SS,收集至沉淀池处理后外排入市政污水管网。参照化水系统水质类型,污染物产生情况大致为 COD: 74mg/L、SS: 60mg/L。

⑥初期雨水

根据前文给排水平衡计算,项目场地收集的初期雨水量为 76.69m³(降雨前 15min),主要污染物为 SS,拟建设一座初期雨水收集池 77m³,收集的初期雨水静置后上层清液排入循环水池,达标排入市政污水管网。

综上,本项目废水源强污染物核算情况见表 3.12.2-1。

表 3.12.2-1 项目废水污染源强核算结果及相关参数一览表

			John 8000				治理技	 昔施			污染物				
	污染源	污染物	核算方法	废水量 (t/a)	产生浓度 (mg/L)	产生量 (t/a)	工艺	效 率 %	回用水 量 (t/a)	排放废 水量 (t/a)	预测排放 浓度 (mg/m³)	预测排 放量 (t/a)	允许排 放浓度 (mg/m³)	允许排 放量 (t/a)	排放去向
		pН			6~9	/		/			6~9	0	6~9	0	
		COD	经验		340	0.5655	三级	15			289	0.4807	500	0.8317	
	生活污水	BOD ₅	参数	1663.34	200	0.3327	化粪	11	0	1663.34	178	0.2961	300	0.4990	排入马铺污水
	,,,,,,,	SS	法		200	0.3327	池	47	1		106	0.1763	400	0.6653	· 处理厂
		NH ₃ -N	1		32.6	0.0542		4	1		31	0.0516	35	0.0582	
	11 1 7 12	рН	产污		6~9	/		/			/	0	/	0	回用于输送系
	化水系统	COD	系数	143856	74	10.6453	/	/	143856	0	/	0	/	0	统冲洗用水,不
	废水	SS	法		60	8.6314		/	1		/	0	/	0	外排
		рН	产污		6~9	/	/	/			6~9	0	6~9	0	50%回用与调
	锅炉废水	COD	系数	7992	74	0.5914	沉淀	66	3996	3996	25	0.0999	500	1.9980	湿灰用水,剩余
	柄炉/及小	SS	法法		60	0.4795	池	50		3770	30	0.1199	400	1.5984	50%外排入马 铺污水处理厂
生		рН			5~6	-		/			/	0	/	0	
产		COD			2000	11.2		/	1		/	0	/	0	
废		SS			5000	28.0		/]		/	0	/	0	
水		氟化物			210	1.176	114 <i>T大</i>	/			/	0	/	0	
	脱硫系统	硫化物] · 类比		1	0.0056	脱硫废水	/			/	0	/	0] - 回用于除渣调
		总铅) 矣比 · 法	5600	1	0.0056	及 水 处理	/	5600	0	/	0	/	0	
	及小	总汞			0.05	0.0003	系统	/			/	0	/	0	→ 湿用水, 不外排
		总砷		0.5	0.0028	水坑	/			/	0	/	0		
		总镉			0.1	0.0006		/			/	0	/	0	
		石油类			85	0.476		/			/	0	/	0	
		总磷			1	0.0056		/			/	0	/	0	

三明市沙县青州片区集中供热能源综合利用项目环境影响报告书

		挥发酚			0.1	0.0006		/			/	0	/	0	
	输送系统 冲洗废水	SS	类比法	71928	237	17.0469	沉淀 池	50	71928	0	/	0	/	0	回用于厂区绿 化灌溉及地面 冲洗、厂区降 尘,不外排
	冷却系统	COD	类比	11988	60	0.7193	沉淀	66	0	11988	20	0.2398	500	5.994	排入马铺污水
	定期排水	SS	法	11900	10	0.1199	池	50	U	11900	5	0.0599	400	4.7952	处理厂
	一体化净	COD	 类比	30289.6	74	2.2414	沉淀	66		30289.6	25	0.7572	500	15.1448	排入马铺污水
	水设备废 水	SS	法	8	60	1.8174	池	50	0	8	30	0.9087	400	12.1159	处理厂
;	初期雨水	SS	类比 法	76.69t/ 单次	150	0.0115t/ 单次	初期 雨水 池	/	0	76.69t/ 单次	150	0.0115t/ 单次	400	0.0307t /单次	排入马铺污水 处理厂
生产	产废水合 计	/	/	271730. 37	/	/	/	/	225380	46350.3 7	/	/	/	/	/

表 3.12.2-2 项目生产废水外排情况汇总

	and to Me well		产	 生		排放					
序号	废水类型	污染物	产生浓度 (mg/L)	产生量(t/a)	削减量(t/a)	预测排放浓度 (mg/m³)	预测排放量 (t/a)	允许排放浓度 (mg/m³)	允许排放量(t/a)		
		废水量	/	7992	3996(回用)	/	3996	/	3996		
1	锅炉废水	COD	74	10.6453	10.5454	25	0.0999	500	1.9980		
		SS	60	8.6314	8.5115	30	0.1199	400	1.5984		
	冷却系统定	废水量	/	11988	0	/	11988	/	11988		
2	期排水	COD	60	0.7193	0.4795	20	0.2398	500	5.994		
	为11十八	SS	10	0.1199	0.06	5	0.0599	400	4.7952		
	一体化净水	废水量	/	30289.68	0	/	30289.68	/	30289.68		
3		COD	74	2.2414	1.4842	25	0.7572	500	15.1448		
	设备废水 —	SS	60	1.8174	0.9087	30	0.9087	400	12.1159		

三明市沙县青州片区集中供热能源综合利用项目环境影响报告书

		废水量	/	76.69t/单次	0	/	76.69t/单次	/	76.69t/单次
4	初期雨水	SS	150	0.0115t/ 单次	0	150	0.0115t/ 单次	400	0.0307t/单次
	生产废水排口(合计)		/	50346.37	3996	/	46350.37	1	46350.37
生产废水排			270	13.606	12.5091	24	1.0969	500	23.1368
			210	10.5802	9.4802	24	1.1	400	18.5402

3.12.3 噪声源强

本工程噪声主要来自主厂房内的设备噪声以及厂区泵房、空压机室及脱硫系统等,主要噪声源见表 3.12.3-1。

表 3.12.3-1 项目噪声源强调查清单

	设备名称	单位	数量	声频特性	监测位置	声压级	降噪措施	降噪效果 dB(A)
	锅炉	台	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
	一次风机及配套电机	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
	引风机及配套电机	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
锅炉房	二次风机及配套电机	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
物 <i>炉 </i>	螺旋给料机	台	4	中低频	设备外 1m	80~85	隔声罩壳、厂房隔声	25
	皮带给煤机	台	4	中低频	设备外 1m	80~85	隔声罩壳、厂房隔声	25
	炉前点火设备	套	2	中低频	设备外 1m	80~85	隔声罩壳、厂房隔声	25
	吹灰器	套	2	中低频	设备外 1m	80~85	隔声罩壳、厂房隔声	25
	除氧器	台	2	中低频	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	电动给水泵	台	3	宽频分布	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	连续排污扩容器	台	2	中低频	设备外 1m	70~85	隔声罩壳、厂房隔声	25
化水车间	定期排污扩容器	台	2	中低频	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	疏水扩容器	套	2	中低频	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	疏水泵	台	4	宽频分布	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	除盐水系统	套	1	中低频	设备外 1m	70~85	厂房隔声	15
炉前煤仓	输煤系统(给料机、皮带 机、破碎机)	套	1	中低频	设备外 1m	75~85	隔声罩壳、厂房隔声	25
	除尘装置	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
炉前生物质	输送生物质燃料系统(给 料机、皮带机)	套	1	中低频	设备外 1m	75~85	隔声罩壳、厂房隔声	25
仓	除尘装置	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
吟坛沐乏欤	冷渣器	台	4	中低频	设备外 1m	70~75	隔声罩壳、厂房隔声	25
除灰渣系统	1号皮带输渣机	台	2	中低频	设备外 1m	70~80	隔声罩壳、厂房隔声	25

三明市沙县青州片区集中供热能源综合利用项目环境影响报告书

	2号皮带输渣机	台	2	中低频	设备外 1m	70~80	隔声罩壳、厂房隔声	25
	斗式提升机	台	2	中低频	设备外 1m	70~75	隔声罩壳、厂房隔声	25
	布袋除尘器	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
	浓相气力输送仓泵	台	6	宽频分布	设备外 1m	70~85	隔声罩壳、厂房隔声	25
空压机房	空压机	台	2	宽频分布	设备外 1m	70~85	隔声罩壳、厂房隔声	25
	旋风布袋除尘器	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
脱硫除尘系	石灰石-石膏湿法烟气脱 硫	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
统	石膏脱水系统	套	2	中低频	设备外 1m	70~75	隔声罩壳、厂房隔声	25
	石灰石粉仓顶除尘器	套	1	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
	脱硫剂制备系统	套	1	中低频	设备外 1m	70~75	隔声罩壳、厂房隔声	25
脱硝系统	低氮燃烧器+SNCR+高 温 SCR 系统	套	2	中低频	吸风口外 3m	75~90	进风口消声器、管道外壳阻尼	25
冷却水系统	机械通风冷却塔	座	1	中低频	设备外 1m	70~75	厂房隔声	15
行邓小尔统	冷却水泵	台	2	宽频分布	设备外 1m	70~85	隔声罩壳、厂房隔声	25

3.12.4 固体废物

本项目产生的固体废物包括一般工业固废、危险废物和生活垃圾。

(1) 一般工业固废

根据前文生产工艺及产污环节分析,项目运营期产生的一般工业固废包括炉渣、飞灰、脱硫产生的石膏、软化水系统更换下的废离子交换树脂、脱硫废水处理设施污泥、输送系统冲洗废水沉淀池污泥以及除尘器更换下的废滤袋。

①炉渣

根据前文废气源强渣仓扬尘分析时,计算可知锅炉使用产生的炉渣量 7686t/a, 收集暂存于厂区渣仓, 交由有主体资格或资质的单位回收综合利用。

②飞灰

根据前文废气源强灰库扬尘分析时,计算可知锅炉使用产生的飞灰量 5124t/a, 收集 暂存于厂区灰库, 交由有主体资格或资质的单位回收综合利用。

③脱硫石膏

项目锅炉废气采用石灰石-石膏湿法脱硫,会产生石膏副产物,产生量根据《污染源源 强核算技术指南 锅炉》(HJ 991-2018)里推荐的计算公式:

$$E = \frac{M_F \times E_S}{64 \times (1 - \frac{C_s}{100}) \times \frac{Cg}{100}}$$

$$Es = 2 \times K \times R \times (1 - \frac{q_4}{100}) \times \frac{\eta_s}{100} \times \frac{S_{ar}}{100}$$

式中: E---核算时段内脱硫副产物产生量, t:

M_F---脱硫副产物摩尔质量,为136:

Es---核算时段内二氧化硫脱除量,t; K 指燃料中硫燃烧后氧化成二氧化硫的份额,取 0.78; R 指核算时段内锅炉燃料耗量,煤炭燃料 87360t,生物质燃料 37440t; q4指锅炉机械不完全燃烧热损失,取 90%; n s 指脱硫效率,取 95%,Sar 指收到基硫质量分数%,其中煤炭取 0.39%,生物质燃料取 0.06%。

64---二氧化硫摩尔质量;

Cs---脱硫副产物含水率,%,副产物为石膏时含水率一般≤10%:

Cg---脱硫副产物纯度,%,副产物为石膏时纯度一般≥90%。

综上计算可得,锅炉烟气脱硫产生的副产物石膏量为 127.55t/a。

④废离子交换树脂

锅炉钠离子交换器树脂用量约 20m³, 3 年更换 1 次, 树脂密度为 550kg/m³, 年最大更换量 3.7t/a。根据《<国家危险废物名录>常见问题解答(第一批)》, 900-015-13 类废物中的"工业废水处理过程产生的废弃离子交换树脂"中所称的工业废水特指工业企业工艺生产过程产生的废水,不包含工业企业锅炉软化水。因此,本项目锅炉软化水处理过程产生的废弃离子交换树脂不属于该类危险废物,属于一般工业固体废物,更换时直接由厂家拉走,不在厂内贮存。

⑤沉淀池污泥

根据前文废水源强分析,锅炉冲洗废、净水设施排污水和冷却系统排污水收集至沉淀池,污泥悬浮物处理约50%,共产生脱水污泥2.177t/a,主要成分为煤炭/生物质屑,脱水晾干后掺入锅炉焚烧。

⑥废滤袋

项目料仓、灰仓等配置的除尘器采用布袋除尘工艺,除尘滤袋更换周期为1年2次,单次更换量约0.1t,共计产生量0.2t,全部由厂家回收,不在厂内贮存。

固废名称	一般固废类别及代 码	产生量 (t/a)	主要成分	暂存位置	处置方式									
炉渣	SW03:900-001-S03	7686	Si ₂ O ₃ 、CaO、	渣仓	委托有资质单位									
			Fe ₂ O ₃ 等		定期外运处置									
飞灰	SW02:900-001-S02	5124	Si ₂ O ₃ 、CaO、	灰库	委托有资质单位									
	3 W 02.900-001-302	3124	Fe ₂ O ₃ 等	<i> 次注</i>	定期外运处置									
脱硫石膏	CW06.441 001 C06	127.55	硫酸钙	丁喜盼专 词	委托有资质单位									
	SW06:441-001-S06	127.55	9元段行 	石膏贮存间	定期外运处置									
废离子交换树脂	SW59:900-099-S59	3.7	树脂	产生后	自一商回收									
>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CW07 000 000 C07	2.177	神史 七豆	运冲斩去 豆	晾干后掺入锅炉									
沉淀池污泥	SW07:900-099-S07	2.177	煤炭、木屑	污泥暂存区	燃烧									
废滤袋 SW59:900-009-S59 0.2 粉尘 产生后由厂商回收														
备注:项目一般固	废代码根据《固体废物	备注:项目一般固废代码根据《固体废物分类与代码目录》(2024年 中华人民共和国生态环境部)												

表 3.12.4-1 项目一般工业固废产生及处置情况汇总表

(2) 危险废物

项目运营期产生的危险废物包括脱硝系统废催化剂、脱硫系统废水处理污泥、废机油、空油桶和含油废抹布。

赋码。

①废催化剂

脱硝过程会产生废脱硝催化剂,产生量约 3t/a,属于《国家危险废物名录》(2025年版)中的 HW50 废催化剂:772-007-50 类危废,暂存在危废贮存间,委托有资质单位定期外运处置。

②脱硫废水污泥

项目脱硫废水产生量为 5600t/a,根据前文废水源强分析,水质中悬浮物 < 5000mg/L,经脱硫废水处理系统进行中和、絮凝沉淀处理后达到《燃煤电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL_T 997-2020)中悬浮物 < 70mg/L 标准后回用,过程中去除的悬浮物,即产生的污泥量约 27.61t/a。需进一步鉴别危废属性,暂按危废进行管理。

③废机油

项目设备机修会产生废机油,产生量约 0.5t/a,属于《国家危险废物名录》(2025年版)中的 HW08:900-249-08 类危废,暂存在危废贮存间,委托有资质单位定期外运处置。

④空油桶

机修使用机油每年约产生 4 个空油桶,单个空桶净重 20kg,即产生的空油桶重 0.08t/a,属于《国家危险废物名录》(2025 年版)中的 HW49:900-041-49 类危废,暂存在危废贮存间,委托有资质单位定期外运处置。

⑤含油废抹布

机修时还会产生含油废抹布约 0.02t/a,属于《国家危险废物名录》(2025 年版)中的 HW49:900-041-49 类危废,暂存在危废贮存间,委托有资质单位定期外运处置。

危险废物名称	危废类别及代码	危废特性	产生量 (t/a)	产生工序	形态	有害 成分	处置方式
废催化剂	HW50: 772-007-50	T	3	烟气脱硝	固态	TiO ₂	
脱硫废水污泥	待鉴定	待鉴定	27.61	脱硫废水 中和、絮 凝沉淀	固态	待鉴定	委托有资 质单位定 期外运处
废机油	HW08: 900-249-08	T, I	0.5	设备机修	液态	矿物油	
空油桶	HW49: 900-041-49	T/In	0.08	设备机修	固态	矿物油	置
含油废抹布	HW49: 900-041-49	T/In	0.02	设备机修	固态	矿物油	

表 3.12.4-2 改扩建项目危险废物产生及处置情况汇总表

(3) 生活垃圾

本项目职工人数 37 人,不在厂内食宿,不住厂员工生活垃圾产生量按照每人

0.5kg/d, 年作业 333d, 则生活垃圾产生量约为 6.161t/a, 收集后统一交由环卫部门清运处置。

3.12.5 污染物排放总量

根据以上废水、废气以及固废源强分析可知,项目污染物排放情况汇总见表 3.12.5-1。

表 3.12.5-1 项目污染物排放总量一览表

	米口山	运纳	Him & The	产生量	削减量	预测排放	允许排放
	类别	15米	物名称	(t/a)	(t/a)	量(t/a)	量(t/a)
		废	水量	1663.34	0	1663.34	1663.34
		C	COD	0.5655	0.0848	0.4807	0.8317
	生活污水	В	OD ₅	0.3327	0.0366	0.2961	0.4990
応ず			SS	0.3327	0.1564	0.1763	0.6653
废水		N	H ₃ -N	0.0542	0.0026	0.0516	0.0582
		废	水量	50346.37	3996	46350.37	46350.37
	外排生产废水	C	COD	13.606	12.5091	1.0969	23.1368
			SS	10.5802	9.4802	1.1	18.5402
		田星小子中四	设计燃料	2592	2590.704	1.296	20.21
		颗粒物	校核燃料	9374	9369.313	4.687	16.16
		GO.	设计燃料	180	170.977	9.023	70.735
		SO_2	校核燃料	510	484.506	25.494	56.56
	锅炉废气	NO	设计燃料	404	323.16	80.84	101.05
	柄 <i>炉 1</i> 友 【	NOx	校核燃料	323	258.36	64.64	80.8
床左		汞及其	设计燃料	0.0015	0.00105	0.00045	0.101
废气		化合物	校核燃料	0.0013	0.00092	0.00038	0.081
(有 组织)		写	设计燃料	4.608	0	4.608	4.608
組织力		氨	校核燃料	3.684	0	3.684	3.684
	煤炭破碎粉尘	颗	粒物	5.59	5.031	0.559	0.559
	炉前煤仓扬尘	颗	粒物	2.80	2.52	0.280	0.280
	生物质破碎粉尘	颗	粒物	2.40	2.16	0.240	0.240
	炉前生物质仓扬尘	颗	粒物	1.20	1.08	0.120	0.120
	灰库扬尘	颗	粒物	6.35	5.715	0.635	0.635
	石灰石粉仓扬尘	颗	粒物	0.455	0.419	0.036	0.036
	煤炭运输、贮存、	颗	粒物	1.398	0.699	0.699	0.699
	破碎粉尘	W-7	المام والمسا	0.600	0	0.600	0.600
	煤炭上料粉尘	颗	粒物	0.699	0	0.699	0.699
废气 (无	生物质运输、贮存、 破碎粉尘	颗粒物		0.60	0.30	0.30	0.30
组织)	生物质上料粉尘	颗粒物		0.30	0	0.30	0.30
	飞灰卸料粉尘	颗	粒物	1.588	0	1.588	1.588
	石灰石上料粉尘	颗	粒物	0.091	0	0.091	0.091
	储罐呼吸		氨	0.144	0	0.144	0.144

		炉渣	7686	7686	0	0
		飞灰	5124	5124	0	0
	一般固废	脱硫石膏	127.55	127.55	0	0
		废离子交换树脂	3.7	3.7	0	0
		沉淀池污泥	2.177	2.177	0	0
固废一		废滤袋	0.2	0.2	0	0
		废催化剂	3	3	0	0
		脱硫废水污泥	27.61	27.61	0	0
	危险废物	废机油	0.5	0.5	0	0
		空油桶	0.08	0.08	0	0
		含油废抹布	0.02	0.02	0	0
	生活垃圾	生活垃圾	6.161	6.161	0	0

4 环境现状调查与评价

4.1 地理位置

沙县位于福建省中部偏西北,闽江支流沙溪下游,地处北纬 26°6′~26°41′, 东经 117°32′~118°6′。东临南平,西近三明,南连尤溪、大田,西北明溪、将乐 交界,北接顺昌。沙县全境总面积 1815km²。福银高速公路从境内通过,沙溪流经境内。

青州镇位于沙县东北部,东经 117°32′~118°06′,北纬 26°06′~26°41′之间,青州镇东北临南平,西邻高桥镇、凤岗街道,南邻高砂镇、郑湖乡。镇政府所在地青州村,西南距沙县中心城区约 34km,距南平市建成区约 28.4km。

青州化工产业集中区座落于青州镇。青州化工产业集中区,位于三明市沙县青州镇沙溪河右岸,西侧临近 G205, 东侧临近马铺溪,沿 G205(北至马铺,南至管前村)和马铺溪向南延展至临近山体位置。

项目选址于三明市沙县青州镇涌溪村马铺(青州化工产业集中区 B 片区),地理坐标为: 北纬 26°29′11.297″,东经 117°57′55.837″。厂区东北侧为马铺溪,厂区西北侧、西南侧和东南侧现状均为空地(规划为工业用地),西南侧约 124m 处分布企业为福建日汇鑫油脂工业有限公司和三明康利胶粘有限公司。东北侧约 62m 处为马铺溪,西北侧约 1092m 处为沙溪。项目地理位置图见图 4.1-1,项目周边关系图见图 4.1-2,项目厂区及周边环境照片见图 4.1-3。

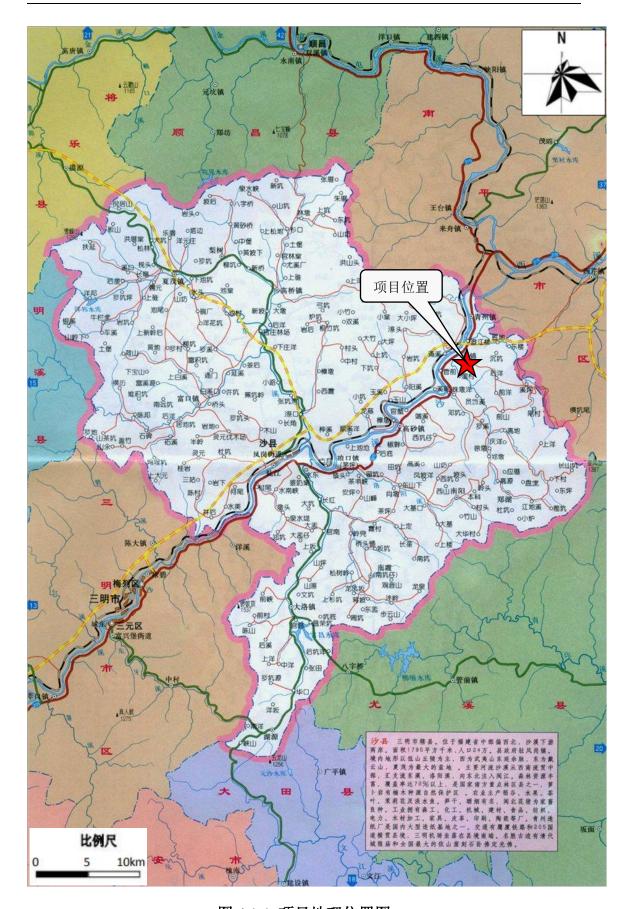


图 4.1-1 项目地理位置图

图 4.1-2 项目周边环境示意图

图 4.1-3 环境现状照片

4.2 自然环境概况

4.2.1 地形地貌

沙县位于闽西南拗陷还北端与闽西北隆起带南端的过渡带。在地质发展历史中,经历多旋回构造运动,褶皱、断裂迭加,早期构造遭受再破坏,沉积岩出现缺失或断失,变质岩大范围分布,岩浆岩多期次侵入,布及全县各乡镇,地质构造颇为复杂。沙县地质以岩浆岩发育,地层出露不全,变质岩分布面广为特征,岩浆岩出露面积占全县面积的62.48%,变质岩占20.27%,沉积岩占17.13%。地层以震旦系——下古生界及侏罗系上统——白垩系上统大范围出露,侵入岩以燕山期花岗岩为主,褶皱、断裂构造多次活动,形成青州——城关,商桥——罗溪两条北东向断陷向斜盆地。断层发育以北东向为主。脉岩种类繁多,矿化活动较强,矿产比较丰富。境内地层出露不全,部分缺失或断失,以震旦系——下古生界为主,侏罗系及白垩系为次,其它地层零星分布。境内岩浆发育,岩性以酸性岩为主,呈岩基、岩株体沿构造隆起带断裂带侵入,主要呈北东方向展布。境内岩浆活动具多期次特征,有加里东期、华力西——印支期、燕山早期、燕山晚期,并以燕山早期岩浆活动最为强烈。区域地震烈度为VI度。

根据区域地质资料可以看出,集中区所露出的地层为粉质粘质土层,包气带厚度小于 5m,且地质相对松散,为大气降水的直接渗入和地下潜水存储创造了条件,同时,也使区域地下水易受到污染。

沙县地势由两侧向中部倾斜。较高山峰大部分在县境西北部和东南部,形成两处大致平行作北东向延伸的中山区。西北部山脉由将乐烧香岐入境,经雪峰山、天湖仔到天台山,最高峰雪峰山海拔高度为 1299m;东南部山脉由大田县五马槽入境,往东北经卜锅峒、乌石顶到南阳的长山坑后山,最高峰锣钹顶海拔高度为 1537m;县内最低洼谷地是青州洽湖,海拔高度为 80m,相对高差为 1457m。中山区的外围为低山区,县境中部属广阔丘陵区。沙溪河呈南西——北东流向斜贯中部,其支流发育,总体作北西——南东向,主要支流有茂溪(东溪)、洛溪(豆士溪)等。形成山峦起伏,沟谷纵横,山间河谷坐落其间的地貌景观。

青州镇地形呈长条多边形,地势南高北低,地貌类型以丘陵为主,沙溪河两岸为河谷平原地貌。镇域内地处丘陵地区的行政村主要有后洋、溪坪、前山、朱源及坂山等,该地区平均海拔高度在500m左右;地处河谷平原地区的行政村主要有青州、澄江楼、涌溪、管前及洽湖等,该地区平均海拔高度在80~100m之间。镇域内与高砂镇交界的天

湖山海拔高度为938m;北部与南平交界的双怪山海拔高度在700m以上;南部金龙岩海拔高度为753m。

项目区位于沙县北部马铺开发区,属低山丘陵构造侵蚀地貌,场地处原为山间沟谷、山坡坡脚地带,现已整平。开发区现已全部整平,东、南侧为山坡坡地;西北侧外围为沙溪河,东北侧为马铺溪,周围山坡形坡度一般在20-40°,总体地势西高东低。大部分山坡坡面上基岩直接出露,部分地段填土层覆盖,厚度一般3-15m。 开发区内场地已整平,场地内多处形成开挖边坡及填方边坡,少部分边坡已采取治理措施进行支护,大部分尚未采取支护措施。

4.2.2 气象特征

沙县属于典型的中亚热带季风气候区,气候温暖湿润。各地年平均气温 14℃~19.4℃。七月最热,月平均气温 28.9℃,一月最冷,月平均气温 10.2℃。平均无霜期 225~279 天。年平均降水量 1600mm~1800mm,由于受地形影响,东南部、北部山地降水多,沙溪沿岸河谷降水量少,一年中降水量分配不均。按其降水性质和所处季节可分为春雨季、梅雨季、台风雷阵雨和旱季四个降水季节。春雨(2~4月)季平均降水量 459.3mm~620mm,梅雨季(5~6月)年平均降水量 520mm~610mm,占年平均降水量的 22%,旱季(10~次年 1月),年平均降水量 200mm 左右,占年平均降水量的 10%。从降雨量及季节分配来看,水分资源较充沛,水分基本能满足作物生长需要,但由于年际和年内间时空分布不均,相对变率较大,也给农业带来旱涝威胁。全年主导风向为东风,频率为 6.9%,平均风速 1.7m/s;次主导风为西南风,频率为 4.0%,平均风速 1.0m/s;静风频率为 59.8%。

4.2.3 水文概况

(1) 地表水

沙县境内河网密布,具有树枝状的河流水系,南部各河流域呈狭长型,北部河流流域呈扁圆型,各主要河流均流入沙溪。沙溪是闽江上游三大主要支流之一,为沙县境内最大河流。

沙溪水量大,洪水持续时间长,涨退比较缓慢,具有一般大河流的水文特性。它发源于宁化县泉上和建宁县均口的山脉,在三明洋口仔附近入境,由西南向东北横贯县境,在青州镇洽湖村附近流入南平市。至南平市交界处,河长 322km,县境内长 50km,流域面积 11769.9km²,县境内流域面积约 1800km²。沙溪流至南平后与富屯溪会合为闽江干流。

县城上游 1000m 设有石桥水文站。沙溪沙县段俗称虬江,根据沙县城市环境规划,该河段为III类水域。据石桥水文站的多年观测资料,沙溪多年平均径流量 93.48 亿 m³,多年平均径流量 298m³/s。

沙溪河干流主要水文参数及各月平均流最详见表 4.2-1 和表 4.2-2。

表 4.2-1 沙溪干流主要水文参数

站位	兴坪	梅列	石桥
集水面积(km²)	7377	9454	9922
最大流量(m³/s)	1050~4920	1425~5663	1510~5830
最小流量(m³/s)	6.90~35.8	19.0~71.9	21.7~80.0
平均流量(m³/s)	240	308	323
年径流量(亿(m³)	75.8	97.2	102.0
年径流深度(mm)	1027.5	1028.1	1028.0
河道坡降(万分率)	12	11	10

表 4.2-2 沙溪干流主要水文站月平均流量

月份 站位	1	2	3	4	5	6	7	8	9	10	11	12	全年
兴坪	88.7	132	276	415	521	591	224	117	139	118	105	96.9	240
梅列	114.7	170	349	553	655	758	291	232	179	154	133	120	308
石桥	120	178	365	560	685	796	306	244	188	162	139	126	323

沙溪有关水文参数见表 4.2-3。青州镇饮用水源保护区分布见图 4.2-1。

表 4.2-3 沙县 50km²以上河流流域特征一览表

序	流域	水系	河名	流域内主要地名	河流发源地	河口名称	河流长	:度(km)	流域面	积(km²)	河道坡降
号	机块	小尔	刊 名	,	例	何口石你	总长	境内	全流域	境内	(‰)
1	沙溪	沙溪	沙溪干流	宁化、清流、永安、三 明、沙县	宁化、江西交界	沙溪口	328	56	11793	1853	0.8
2	沙溪	沙溪	东溪(沙溪直流)	夏茂、高桥、富口	夏茂倪居山	东门	63	63	949	823	3.26
3	沙溪	东溪	夏茂溪(东溪支流)	倪居山、夏茂、官庄	夏茂倪居山	官庄	35	35	268	249	20.29
4	沙溪	东溪	富口溪(东溪支流)	陈邦、富口、马山	明溪七姑山	马山	46.5	27	282	189	32.7
5	沙溪	东溪	高桥溪(东溪支流)	杉口、高桥、新坡	顺昌榜山	官庄	26	22	288	274	21.5
6	沙溪	东溪	新桥溪(高桥溪支流)	坡后、中堡、新桥	居洋	高桥	17	17	62	62	9.41
7	沙溪	东溪	杉口溪(高桥溪支流)	杉口、高桥	顺昌榜山	高桥	21	17	123	109.3	26.67
8	沙溪	东溪	安田溪(高桥溪支流)	上里、新坡	鸠婆岩	新坡	15	15	55	55	40.67
9	沙溪	东溪	畔溪(东溪支流)	桂岩、金陵口、西郊	狮子峰	东门	20	20	65.9	65.9	16.7
10	沙溪	沙溪	豆士溪	湖源、大洛、洋坊	湖源大帽山	洋坊	41.7	41.7	306.9	306.9	16.86
11	沙溪	豆士溪	洛溪(豆士溪支流)	湖源、大洛	湖源大帽山	虎跳	30	30	121	121	23
12	沙溪	豆士溪	南霞溪(豆士溪支流)	南坑、南霞、虎跳	文笔山	虎跳	18	18	145	145	24.44
13	沙溪	沙溪	南溪	大华山、大基口、琅口	大华山	琅口	22	22	109	109	10.91
14	沙溪	沙溪	马铺溪	郑湖、郑墩、涌溪	金峰山	涌溪	29	29	143	143	28.45
15	沙溪	马铺溪	郑湖溪(马铺溪支流)	郑湖、郑墩、徐墩	罗风岩	徐墩	15	15	53	53	33.33
16	沙溪	沙溪	澄江楼溪	胜地、澄江楼	狮子岩	澄江楼	21	21	69.9	44.9	31.67

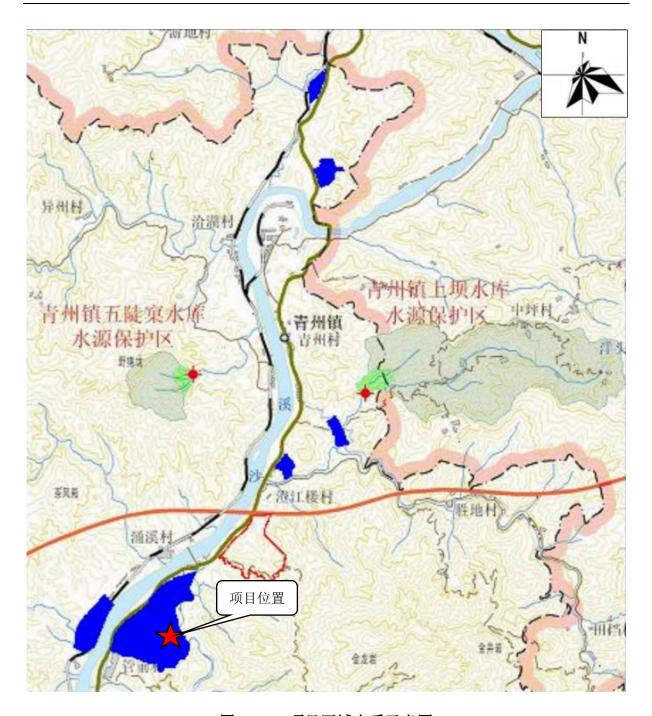


图 4.2-1 项目区域水系示意图

(2) 地下水

沙县地下水主要来自大气降水,平均每年渗入量约为 3.43 亿 m³, 地下径流量约为 3.25 亿 m³。境内河流除南阳乡与尤溪县交界处的尤溪属尤溪水系外,其余均属沙溪水系。由于境内大多数河流比降陡,河床切割深,地下水基本切入河槽、补给河川径流。地下水水质一般为无色、无味、无嗅、透明的低矿化度淡水,适宜饮用,仅个别地区氟离子含量较高。但地下水源点分布距城区较远,且出水量不大,无法满足给水水量的要求。

4.2.4 土壤植被

根据资料,三明市的土壤以红壤和黄壤为主,红壤占总土地面积的 75.4%,而黄壤则为 9.7%;河谷和盆地是粉田尘和沙土;市区水稻土质地稍重,多属中壤,土壤多偏酸性,肥力中等。旱地以灰红泥土、红泥土、黄泥土、菜园泥沙土为主,主要分布在低丘山地;水田以黄泥田和灰泥田占绝大多数,主要分布在低丘山坡、盆地、溪边。

三明市区的植被属中亚热带常绿阔叶林带,现以次生植被为主,主要有:常绿阔叶林、落叶阔叶与常绿阔叶林混交林、常绿针叶林、针阔叶混交林、毛竹林、经济林等等。常绿阔叶林主要分布在郊区,由于人为破坏,面积正在逐步减少,从而为次生林或针叶林所取代。常绿针叶林的主要树种有杉木、马尾松、柳杉等。现有天然的杉木林已很少,主要为人工杉木林。三明实有森林面积 123.62 万亩,森林覆盖率达 69.6%。

4.3 资源分布与利用现状

4.3.1 土地资源

根据 2018 年土地利用变更调查成果,沙县土地总面积 179883.38 公顷,其中农用地 165653.48 公顷,占土地总面积的 92.08%;建设用地面积 8397.2 公顷,占土地总面积的 4.67%,其中城乡建设用地 5925.37 公顷,占土地总面积 3.29%;未利用地 5832.70 公顷,占土地总面积的 3.24%。农用地中,耕地面积 14516.85 公顷。

根据《沙县土地利用总体规划(2006-2020)调整方案》,至 2020年,沙县耕地保有量不低于 13666.67 公顷(205000亩);建设用地总规模控制在 8980.00 公顷以内,城乡建设用地规模控制在 6300 公顷以内。截至 2018年,沙县现状耕地、建设用地、城乡建设用地面积均在规划管控目标范围内。

4.3.2 水资源

根据三明市水资源公报,2017年三明市水资源总量 196.38亿 m^3 。其中: 地表水资源量 196.38亿 m^3 ,地下水资源量 59.57亿 m^3 。全市平均产水系数 0.57,平均产水模数 85.48万 m^3/km^2 。

2017年全市地表水资源量为196.38亿立方米,折合年径流深854.8毫米,比上年少49.7%,比多年平均值少8.0%,属平水年份。

三明市各行政分区地表水资源量与多年平均值相比偏少 0.7%~13.8%。行政分区中, 永安市的地表水资源量最多,为 27.11 亿立方米,占全市地表水资源总量的 13.8%。全 市地下水资源量为59.57亿立方米,占全市水资源总量的30.33%。

4.3.3 矿产资源

根据《沙县矿产资源总体规划》(2016-2020年),沙县矿产资源种类较多,但储量较小,分布零散,且以非金属矿为主,截至2015年底,已发现矿产29种,占全市(79种)已发现矿种的36.7%,主要有建筑用花岗岩、建筑用凝灰岩、水泥用灰岩、熔剂用灰岩、萤石、玻璃用石英岩、银等;探明资源储量的7种,均为非金属矿产,已上福建省矿产资源储量表的4种;主要矿产资源分布相对集中,分布于富口镇、南部的郑湖乡以及中部的凤岗街道。

截止 2015 年底,全县矿山总数为 28 个,均为非金属矿山,其中建筑用砂石土矿山 14 个,其他矿种矿山 14 个,开采矿种主要有萤石、石灰岩、石英、花岗岩和凝灰岩等。 2015 年沙县矿业总产值 0.155 亿元,占工业总产值的比例为 0.63%。其中,熔剂用灰岩矿业产值 313.56 万元,玻璃用石英岩矿业产值 180 万元,建筑用花岗岩矿业产值 52.36 万元,建筑用凝灰岩矿业产值 1004.8 万元。

4.3.4 森林资源

2018 年,沙县林地面积 145900 公顷,有林地 1364.1 公顷,森林覆盖率 75.81%,森 林蓄积量 1392.1 万立方米。

4.4 沙县青州化工产业集中区 B 片区污染源现状

4.4.1 入驻企业概况

集中区 B 片区已建和在建企业 15 家,其中: 11 家化工类,2 家造纸类(德利纸业、锦华纸业)、1 家供气企业(安然燃气)和1 家环境治理类(和信中禾)企业。福建和信中禾环保科技有限公司因投资等诸多原因已停止建设,已退出园区。

序号	企业名称	代表 产业	主要产品	经营 状态	占地面 积(hm²)	环评批文号	验收 情况
1	福建省沙县 松川化工有 限公司	专用化 学产品	处理造纸废液塔尔油, 主产品为浮油松香、浮 油沥青	建成运行	9.9	明环审 [2017]1 号	GRE 验监 字[2018] 第 35 号
2	福建巴汉夫 科技股份有 限公司	专用化 学产品	60000 吨/年高性能环 保增塑剂对苯二甲酸 二辛脂	建成运行	5.4	明环审 [2017]8 号, 明环审 [2017]25 号	/

表 4.4-1 园区现有企业基本情况一览表

3	福建新瑞泰 科技有限公 司	专用化 学产品	8800 吨/年 PVC、PU 人造革助剂,主要产品 有聚氨酯树脂、人造革 助剂、水性表面处理剂	建成运行	2.3	明环审 [2017]7 号	GRE 验监 字[2019] 第 1 号
4	福建民祥化 工新材料有 限公司	专用化 学产品	600 吨/年三氯化锑、 1000 吨/年四氯化锡	建成运行	1.2	明环审 [2017]27 号	/
5	沙县青州日 化有限公司	基础化 学原料, 日用化 学品	松油醇 6000 吨/年、苯 乙醇 3000 吨/年、酯类 香料系列产品 3000 吨/ 年、呋喃酮系列产品 200 吨/年、邻苯二甲酸 二乙酯 1500 吨/年	建成运行	12.5	明环评 [2019]6 号	/
6	沙县德利纸 业有限公司	造纸和 纸制品 业	年产 12 万吨纺筒纸板	建成运行	1.4	/	/
7	沙县锦华纸业有限公司	造纸和 纸制品 业	制罐专用纸、瓦楞纸、 箱板纸	建成, 已停 产	1.6	停产	/
8	沙县安然燃 气有限公司	燃气生 产和供 应业	LNG 气化站,气化规 模 10000Nm³/h	建成运行	0.9	明环审函 [2018]35 号	/
9	福建省楚兴 药业有限公 司	基础化学原料	年产沙库比曲医药关键中间体 10t、替卡格雷医药关键中间体 10t、马拉维诺医药关键中间体 10t、贝曲西班医药关键中间体 10t、氨甲苯酸 300t、乙磺唑 300t	建成运行	3.3	明环评 [2020]11 号	/
10	三明康利粘 胶有限公司	化学原 料和化 学制品 制造业	年产 3500 吨改性聚氨 酯胶、500 吨水性聚氨 酯胶、2400 吨电子胶	建成运行	2.5	明环审 [2018]1 号	/
11	福建铭峰高 分子有限公 司	合成材 料,专用 化学产 品	10000t/a 醇酸树脂、增塑剂(7500t/a 邻苯二甲酸二乙酯、5000t/a 邻苯二甲酸二甲酯、5000t/a 柠檬酸三乙酯、5000t/a 柠檬酸三乙酯、5000t/a 三醋酸甘油酯)	建成运行	1.2	明环评 [2020]12 号	/
12	福建日汇鑫 油脂工业有 限公司	专用化 学品	年处理 5 万吨皂脚,年 产酸化油 21700t	建成运行	1.7	明环审 [2018]21 号	/
13	福建和信中	环境治	废电子剥离液、清洗	退出,	9.8	退出	/

	禾环保科技	理	液、废 NMP、废有机	土地			
	有限公司		溶剂、电子废酸回收	收储			
	福建省福灿	专用化	年产 15 万吨聚合氯化	建成		明环评	
14	化学产品有	学品	铝、2万吨硫酸铝、3	运行	1.33	[2022]62 号	/
	限公司	子吅	万吨聚合硫酸铁	色11		[2022]62 <i>与</i>	
	福建海思材	化学试	年产减水剂(聚羧酸)5	建成		明环评	
15		剂和助	万吨、混凝土用添加剂		0.867	, , , , ,	/
	料有限公司	剂制造	(速凝剂)5 万吨	运行		[2022]27 号	

图 4.4-1 园区入驻企业分布图

4.4.2 园区废水污染物排放情况

整合后工业集中区主要企业废水排放情况见表 4.4-2。

表 4.4-2 园区已建、在建企业主要废水排放情况一览表 t/d

序号	企业名称	新鲜水用量	重复用水	废水排放量	中水回用	循环水重 复利用率	用水水源
1	松川化工	252.2	3528	72.36	0	93.3%	
2	巴汉夫	77.3	136800	63.8	0	97.9%	
3	新瑞泰	136.86	2960	11.25	0	95.6%	
4	万利化工	32	104	7.2	0	76.5%	
5	青州日化	434.37	7200	228.38	0	94.3%	
6	安然	2.2	0	2.0	0	0	均由园区
7	楚兴药业	74.1	293.8	59.4	0	79.9%	管网供水
8	康利	9	200	1.76	0	95.7%	
9	铭峰	229.92	5760	151.673	0	96.2%	
10	日汇鑫	29.3	0	128.1	0	0	
11	福灿	281.871	0	9.936	0	0	
12	海思材料	186.416	1.403	2.25	1.403	0.7%	
	小计	1745.537	156847.2	738.109	1.403	98.9%	/
13	德利纸业	248	2013	224	0	0	扣铆江
14	锦华纸业	2403	1603	2162	0	0	拟搬迁
	小计	2651	3616	2386	0	0	/

4.4.3 园区废气污染物排放情况

根据收集现有企业环评资料、验收报告、日常监测和已批企业等资料,对园区内企业的污染源情况进行了汇总统计。根据调查,入区企业酸性废气主要采用碱洗处理,VOCs废气主要采用吸附工艺、RTO工艺,工艺粉尘主要采用布袋除尘。园区现状企业废气污染排放情况见表 4.4-3。

表 4.4-3 B片区企业大气污染物排放量一览表(单位: t/a)

序 号	企业名称	颗粒物	SO ₂	NOx	NMHC	НСІ	甲醇	硫酸 雾	DMF	甲苯	丙酮	氯	锡及其 化合物	二氯 甲烷	氯苯	HF
1	松川化工	2.94	18.94	18.86	0.409	/	/	/	/	/	/	/	/	/	/	/
2	巴汉夫	7.96	67.2	47	0	/	/	/	/	/	/	/	/	/	/	/
3	新瑞泰	0.102	0.676	0.846	0.452	/	/	/	0.31	0.13	0.019	/	/	/	/	/
4	万利化工	2.8	/	/	/	0.6	/	/	/	/	/	1.4	0.1	/	/	/
5	青州日化	2.65	6.89	13.41	8.86	/	/	/	/	1.24	/	/	/	/	/	/
6	安然	/	/	/	0.013	/	/	/	/	/	/	/	/	/	/	/
7	楚兴药业	/	0.011	1.887	1.2	0.039	0.1	0.014	/	0.047	0.005	0.09	/	0.11	0.741	/
8	康利	/	/	/	0.2879	/	/	/	0.0007	0.0544	0.0589	/	/	/	/	/
9	铭峰	1.6	4.32	8.67	3.08	/	0.23	/	/	/	/	/	/	/	/	/
10	日汇鑫	/	0.001	1.75	1.87	/	/	0.51	/	/	/	/	/	/	/	/
11	福灿	2.512	1.975	18.828	/	0.57	/	0.099	/	/	/	/	/	/	/	/
12	海思材料	1.763	0.016	0.127	0.406	/	/	/	/	/	/	/	/	/	/	0.004
13	德利纸业	22.24	81.57	17.73	/	/	/	/	/	/	/	/	/	/	/	/
14	锦华纸业	15.48	65.44	10.4	/	/	/	/	/	/	/	/	/	/	/	/
15	合计(不含德利纸 业、锦华纸业)	22.327	100.029	111.378	16.5779	1.209	0.33	0.623	0.3107	1.4714	0.0829	1.49	0.1	0.11	0.741	0.004

4.5 马铺化工集中区污水处理厂概况

(1) 建设现状

沙县青州化工产业集中区 B 片区集中污水处理厂为沙县水南马铺化工集中区污水处理厂,于 2016 年 3 月 16 日经原三明市沙县环境保护局批复(沙环函[2016]12 号)同意项目建设。项目总投资 1046.33 万元,其中环保投资 100 万元,近期建设规模 2000t/d,原设计服务对象为青州化工产业集中区 A、B 片区的工业废水和生活污水。该项目于 2016年动工建设,2017年底投入试运行,由于设计方案调整,该污水厂仅接纳 B 片区废水,A 区另行建设集中污水处理厂。2022年完成了提标改造,污水处理工艺为"格栅沉砂+浅层气浮+芬顿高级氧化+沉淀+缺氧+生物接触氧化+沉淀+臭氧氧化+生物接触氧化+沉淀+泉气空、污泥处理工艺为"污泥水缩+污泥调理+板框脱水"。

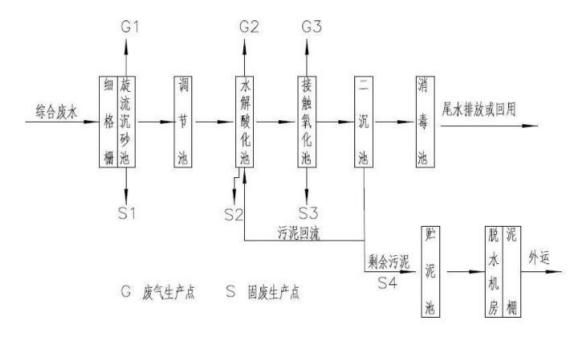


图 4.5-1 园区污水处理厂处理工艺流程图

工业区污水通过污水管网收集、输运至污水处理厂,先经过细格栅和沉砂池,经初级处理和计量后的污水进入调节池,进行水量调节,沉淀大部分污泥,污水至后续的水解池+接触氧化池,在此污水依次通过厌氧(水解)、缺氧、好氧段,并且实现硝化混合液的内循环,从而去除污水中的大部分BOD5、COD、氨氮和磷。生化后的污水经后续的中沉池进行固液分离,二沉池底部沉淀污泥在重力作用下排放到污泥泵房,通过污泥泵部分回流到氧化沟上游的厌氧(水解),剩余污泥则排放到储泥池。二沉池的上部清水通过集水槽收集后进入紫外线消毒池,消毒池出水再进入尾水监测井经计量和环保监测后排入沙溪。

由于 B 片区现状在产企业较少,进水量较低,暂未开展竣工环保验收,接纳废水暂存在调节池后间断性开启运行。

(2) 服务范围

污水处理厂主要处理青州化工产业集中区 B 片区的生活污水和工业废水,本项目在 其接纳范围内。

(3) 进出水水质指标

园区集中污水处理厂要求各企业出水主要水质达到污水处理厂主要进水指标要求,其它水质指标满足《污水综合排放标准》(GB8978-1996)三级标准及《污水排入城市下水道水质标准》(CJ343-2010)B等级排放标准后才能接入,尾水排放执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准。其设计进、出水水质见下表。

项目	COD	BOD ₅	SS	TN	NH ₃ -N	TP	pН	LAS	粪大肠菌群数
进水水质(mg/L, <)	500	300	400	40	35	3	6~9	20	
出水水质(mg/L, <)	50	10	10	15	5(8)	0.5	6~9	0.5	10000(个/L)
去除率(%, >)	90	96.7	97.5	62.5	85.7	83.3	/	95	

表 4.5-1 设计进、出水水质

4.6 应急设施及管网建设

青州化工产业集中区 B 片区已设置一个 2000m³ 的公共应急池,位于污水处理厂内,应急管网已覆盖。

图 4.6-1 园区应急池照片

4.7 环境质量现状调查

4.7.1 地表水环境质量现状调查与评价

根据《2024年三明市生态环境状况公报》(2025.6.5),全市主要流域 55 个国(省) 控断面各项监测指标年均值 I~III类水质比例为 100%,其中 I~II类断面水质比例为 94.5%,同比提高 5.4 个百分点。泰宁金湖、街面水库、安砂水库 3 个主要湖泊水库水质保持优良,3 个主要湖泊水库中,安砂水库水质为III类,街面水库水质为 I 类,泰宁金湖水质 II 类,水质与上年相比均持平,平均综合营养状态指数范围为 31.5~41.0,均处于中营养状态。

因此,沙溪沙县段水环境质量属达标区。

根据三明市生态环境局网站发布的《三明市水环境质量月报》,本次评价收集了其中 2024 年各月份沙溪流域断面沙 11(沙溪高砂,省控断面)、沙 12(水汾桥,国控断面)的水质状况数据,每月份水质均符合III类标准要求。

断面名称 月份	沙县高砂(省控断面)	水汾桥(国控断面)
2024年1月	II类	II类
2024年2月	II类	II类
2024年3月	II类	II类
2024年4月	-	II类
2024年5月	II类	II类
2024年6月	-	II类
2024年7月	II类	II类
2024年8月	II类	II类
2024年9月	II类	II类
2024年10月	III类	III类
2024年11月	II类	III类
2024年12月	II类	II类

表 4.7.1-1 沙溪流域断面沙 11、沙 12 地表水质类别

4.7.2 环境空气质量现状调查与评价

4.7.2.1 基本污染物环境质量现状数据

根据《2024年三明市生态环境状况公报》(2025.6.5),市区空气质量达标天数比例为99.2%,空气质量综合指数为2.54;二氧化硫、二氧化氮、可吸入颗粒物、细颗粒物、一氧化碳、臭氧六项主要污染物的年均值都达到或优于二级标准。10个县(市、区)环境空气质量年均值均达到或优于二级标准;达标天数比例范围为99.2%-100%,空气

质量综合指数范围为 1.38-2.26,除永安市首要污染物为 PM₁₀ 外,其余各县(区)首要污染物均为臭氧。

根据三明市生态环境局网站发布的《三明市环境空气质量月报》,本次评价收集了 其中 2024 年各月份沙县区环境空气质量监测结果(见表 4.7.2-1)。可以看出目前沙县 区大气基本污染物环境质量可达《环境空气质量标准》(GB3095-2012)二级标准以上 要求,区域环境空气质量达标,属于达标区。

监测 SO_2 \mathbf{CO} NO_2 PM_{10} $PM_{2.5}$ O_3 首要 达标 项目 综合 监测时间 污染 天数 指数 mg/m 单位 物 比% $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ 细颗 2024年1月 月均值 21 37 21 1.2 71 2.54 100 粒物 月均值 2024年2月 5 8 24 15 1.3 79 1.86 臭氧 100 月均值 100 2024年3月 6 18 31 16 1.4 100 2.42 臭氧 2024年4月 月均值 7 15 26 17 1.7 99 2.40 臭氧 100 臭氧 93.5 2024年5月 月均值 16 24 14 0.9 2.40 8 145 2024年6月 月均值 11 14 18 11 76 1.83 臭氧 100 1 7 2024年7月 月均值 9 15 臭氧 100 6 0.8 100 1.55 2024年8月 月均值 3 7 19 10 0.6 103 1.58 臭氧 100 2024年9月 月均值 10 90 臭氧 100 6 18 0.8 1.63 2024年10 月均值 7 14 21 11 0.6 90 1.79 臭氧 100 月 2024年11 月均值 臭氧 4 17 23 13 0.6 79 1.83 100 月 2024年12 细颗 月均值 5 0.9 2.94 100 27 41 30 81 粒物 平均值 92.75 6.42 14.67 24.75 14.5 0.98 4.0 日 1608h 年均标准值(二级) 60 40 70 35 均值 均值 36.7 年均值占标率 10.7% 35.4% 41.4% 24.6% 58.0%

表 4.7.2-1 2024 年沙县区基本污染物空气质量现状监测情况

4.7.2.2 其他污染物环境质量现状评价

为了解项目所在区域的其他污染物环境空气质量现状,本次评价委托中瑞安(厦门) 检测科技有限公司在项目评价范围内布设 2 个大气监测点位对 TSP、氨、汞进行了补充 监测,检测报告详见**附件七**。

(1) 监测点位、监测因子、监测频率及时间

项目大气环境影响评价工作等级为一级,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),应以主导风向为轴向在厂址及主导风向下风向 5km 范围内设置 1~2 个监测点位。具体监测点位见图 4.7.2-1,监测点位布置情况见表 4.7.2-2。

编号	监测点位	经纬度	监测因子	采样时间	监测频次
			TSP	2025年4月1	连续监测7天,测日均值
1#	厂址内	N: 26° 29′ 11.38″ E: 117° 57′ 55.97″	汞	日~2025年4	连续监测7天,测小时均值
		2.117 37 33.37	氨	月7日	连续监测7天,测小时均值
		N. 26° 20' 5.65"	TSP	2025年4月1	连续监测7天,测日均值
2#	管前村	N: 26° 29′ 5.65″ E: 117° 57′ 11.09″	汞	日~2025年4	连续监测7天,测小时均值
		D. 117 37 11.09	氨	月7日	连续监测7天,测小时均值

表 4.7.2-2 项目大气环境监测点位布置情况表

图 4.7.2-1 项目大气环境监测点位

(2) 监测方法

本次监测严格按生态环境部颁发的《环境监测技术规范》和《空气和废气监测分析方法》的有关规定和要求执行。项目大气环境现状监测因子分析方法见下表 4.7.2-3。

监测因子	检测方法或依据	检出限
TSP	环境空气 总悬浮颗粒物的测定 重量法 HJ 1263-2022	$7\mu g/m^3$
汞	HJ 542-2009 环境空气 汞的测定 巯基棉富集-冷原子荧光 分 光光度法 (暂行)	6.6×10 ⁻⁶ mg/m ³
氨	环境空气和废气 氨的测定 纳氏试剂分光光度法 HJ533-2009	0.01mg/m ³

表 4.7.2-3 项目大气环境现状监测因子分析方法

(3) 评价方法和标准

①评价标准

TSP 和汞执行《环境空气质量标准》(GB3095-2012)二级标准, 氨参照执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 参考限值。

②评价方法

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),取各监测因子不同评价 时段监测浓度的最大值,作为评价范围内环境空气保护目标及网格点环境质量现状浓度, 计算公式如下:

$$C_{\mathfrak{M}_{\mathcal{K}}(x,y)} = MAX \left[\frac{1}{n} \sum_{j=1}^{n} C_{\underline{k}_{\mathfrak{M}}(j,t)} \right]$$

n—现状补充检测点位数。

(4) 监测结果分析

表 4.7.2-4 项目大气环境监测及评价结果一览表

监测点位	监测因子	评价指标	评价标准/ (mg/m³)	现状浓度范 围/(mg/m³)	最大浓度 占标率/%	超标频 率/%	达标情况
	TSP	日均值	0.3			0	达标
1#厂址内	汞	小时均值	0.3			0	达标
	氨	小时均值	0.2			0	达标
	TSP	日均值	0.3			0	达标
2#管前村	汞	小时均值	0.3			0	达标
	氨	小时均值	0.2			0	达标

注: ND 数值表示未检出。汞为年平均质量浓度限值,按 6 倍折算为 1h 平均质量浓度限值,即为 $0.05 mg/m^3 \times 6$ 倍= $0.3 mg/m^3$ 。

从表 4.7.2-4 项目大气环境质量现状评价结果可知,各项监测因子现状监测值均可达标,评价区域环境空气质量现状良好,具有一定的大气环境容量。

4.7.3 声环境质量现状调查与评价

(1) 监测点位、监测因子、监测频率及时间

项目声环境影响评价工作等级定为三级,根据《环境影响评价技术导则 声环境》 (HJ2.4-2021),布点应覆盖整个评价范围,包括厂界和声环境保护目标。项目声评价范围内无声环境保护目标,因此,建设单位委托中瑞安(厦门)检测科技有限公司 于 2025 年 4 月 1 日对项目厂界四周进行声环境质量现状监测,检测报告见**附件七**。具体监测点位见图 4.7.3-1,监测点位布置情况见表 4.7.3-1。

	**	71 F 7 1 70 mm (14)		
编号	监测点位	监测因子	采样时间	监测频次
1#	厂界北侧			
2#	厂界西侧	 连续等效 A 声级	2025年4月1日	1天,每天昼间、
3#	厂界南侧	注续等双 A 戸级 	2023 平 4 月 1 日	夜间各测1次
4#	厂界东侧			

表 4.7.3-1 项目声环境监测点位布置情况表

图 4.7.3-1 项目声环境监测点位

(2) 监测方法及评价标准

根据《环境影响评价技术导则一声环境》(HJ2.4-2021)和《声环境质量标准》(GB3096-2008)所规定的方法进行。项目厂界噪声监测值执行《声环境质量标准》(GB3096-2008)3 类标准。

(3) 监测结果分析

项目声环境噪声监测结果见表 4.7.3-2。

监测点位	监测时段	监测值	标准限值	达标情况
厂界西侧	昼间		≤65dB (A)	达标
/ 3F四侧 	夜间		≤55dB (A)	达标
厂界北侧	昼间		≤65dB (A)	达标
) 乔北侧	夜间		≤55dB (A)	达标
厂界东侧	昼间		≤65dB (A)	达标
	夜间		≤55dB (A)	达标
厂界南侧	昼间		≤65dB (A)	达标

表 4.7.3-2 项目声环境监测及评价结果一览表

计标	<55dR (∆)	病间	
	≤55dB (A)	俊則	

根据表 4.7.3-2 监测结果表明,选址所在厂界处环境噪声现状值昼间为 38dB,夜间在 36dB~37dB 之间,符合《声环境质量标准》(GB3096-2008) 3 类标准(即昼间≤65dB(A)) 水平。

4.7.4 生态环境现状调查与评价

本项目位于沙县青州化工产业集中区 B 片区,购买已平整空地进行建设,目前园区已基本开发完成,项目场地四周均为其他工业企业,植被主要为绿化带等人工作物。由于受人类活动干扰较重,动物种类不多,均为一些常见的小型动物如野兔、鼠科、蛇类,青蛙等,不涉及珍稀物种。

5 环境影响预测与评价

5.1 施工期环境影响评价

5.1.1 施工期大气环境影响

施工过程中造成大气污染的主要产生源有:运输车辆和施工机械产生的道路二次扬尘;施工材料(水泥、石灰、砂石料)的装卸、运输、堆砌过程以及开挖弃土的堆砌、运输过程中造成扬起和洒落:各类施工机械和运输车辆所排放的废气。

施工产生的扬尘主要集中在土建施工阶段,按起尘的原因可分为风力起尘和动力起尘,其中风力起尘主要是由于露天堆放的建材(如沙子,水泥等)及裸露的施工区表层浮尘,由于天气干燥及大风,产生风力扬尘;而动力起尘,主要在建材的装卸、搅拌过程中,由于外力而产生的尘粒再悬浮而造成。施工车辆行驶引起的路面二次扬尘及物料堆场扬尘、搅拌扬尘是影响区域空气质量的重要原因。

(1) 堆场扬尘

施工期扬尘的另一个主要原因是露天堆场和裸露场地的风力扬尘。由于施工需要,一些建筑材料需露天堆放,一些施工作业点表层土壤需人工开挖和临时堆放,在气候干燥又有风的情况下,会产生扬尘,其扬尘量可按堆场起尘的经验公式计算:

$$Q = 2.1(V_{50}-V_0)^3 e^{-1.023W}$$

式中: Q---起尘量, kg/t · a;

V₅₀----距地面 50m 处风速, m/s;

V₀---起尘风速, m/s:

W----尘粒的含水率,%。

起尘风速与粒径和含水率有关,采取的有效措施是,减少露天堆放和保证一定的含水率及减少裸露地面。粉尘在空气中的扩散稀释与风速等气象条件有关,也与粉尘本身的沉降速度有关。以土为例,不同粒径的尘粒的沉降速度见下表。

次 5.1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
粒径(um)	10	20	30	40	50	60	70
沉降速度(m/s)	0.003	0.012	0.027	0.048	0.075	0.108	0.147
粒径(um)	80	90	100	150	200	250	350
沉降速度(m/s)	0.158	0.170	0.182	0.239	0.804	1.05	1.829
粒径(um)	450	550	650	750	850	950	1050

表 5.1.1-1 不同粒径的尘粒沉降速度

泻咚油度 (m/a)	2 211	2.614	2.016	2 /10	2 920	4 222	1.621
沉降速度(m/s)	2.211	2.614	3.016	3.418	3.820	4.222	4.624

由表 5.1.1-1 可知, 尘粒的沉降速度随粒径的增大而迅速增大。当粒径为 250 μ m 时, 沉降速度为 1.05m/s, 可以认为当尘粒大于 250 μ m 时, 主要影响范围在扬尘点下风向近距离范围内, 而真正对外环境产生影响的是一些微小粒径的粉尘。

(2) 运输车辆扬尘

车辆行驶产生的扬尘,在完全干燥情况下,可按下列经验公式计算:

$$Q = 0.123 \left(\frac{V}{5}\right) \left(\frac{W}{6.8}\right)^{0.85} \left(\frac{P}{0.5}\right)^{0.75}$$

式中: Q---汽车行驶的扬尘, kg/km • 辆;

V---汽车速快, km/h;

W---汽车载重量, t:

P---道路表面粉尘量, kg/m²。

. 通过上式计算,以一辆载重量为 10t 的卡车,通过一段长度为 1km 的路面时,不同路面清洁程度、不同行驶速度情况下的扬尘量,表 5.1.1-2 结果表明,在同样路面清洁程度条件下,车速越快,扬尘量越大;而在同样车速情况下,路面越脏,则扬尘量越大。因此,限制入场施工车辆的行驶速度及保持路面的清洁是减少汽车扬尘的最有效手段。

表 5.1.1-2 不同车速和地面清洁度的汽车扬尘量一览表(单位: kg/辆*km)

车速(km/h)	粉尘量(kg/m²)							
车速(km/h)	0.1	0.2	0.3	0.4	0.5	1.0		
5	0.0511	0.0859	0.1164	0.1444	0.1707	0.2871		
10	0.1021	0.1717	0.2328	0.2888	0.3414	0.5742		
15	0.1532	0.2576	0.3491	0.4332	0.5121	0.8613		
25	0.2553	0.4293	0.5819	0.7220	0.8536	1.4355		

本工程施工阶段拟对汽车行驶路面勤洒水(每天 4~5 次),可以使空气中粉尘量减少 70%左右,可以收到很好的降尘效果。

5.1.2 施工期水环境影响

(1) 施工期生活污水

项目施工人员约 15 人,生活污水产生量为 $0.675 \text{m}^3/\text{d}$,产生浓度 SS: 250 mg/L、BOD₅: 200 mg/L、COD: 400 mg/L 、NH₃-N: 35 mg/L ,经拟建设的移动式厕所收集,委托市政清污车辆外运处置,不对外排放,对周边水体影响小。

(2) 施工废水

施工废水主要来自开挖和钻孔产生泥浆水,各类施工机械设备运转产生的冷却洗涤水以及施工现场清洗、建材清洗、混凝土养护、设备水压试验产生的废水等。其中水泥混凝土浇筑养护用水大多被吸收或蒸发,故其废水排放污染影响较小,同时本项目无需打桩,仅部分池体需要开挖,开挖和钻孔产生的泥浆水很少,故施工期主要生产废水为各类设备的清洗废水。

施工高峰期运输车辆和机械设备冲洗主要集中在每日晚上进行 1 次,每次耗时 1h,每次每辆(台)运输车辆和机械设备平均冲洗废水量约为 0.12t,主要污染物是 含有高浓度的泥沙和较高浓度的石油类物质,具体见表 5.1.1-3。

施工机械清洗废水经临时隔油沉淀池处理后回用作为降尘和保洁用水,不排放,对周边水体影响较小。

序号	项目	污染物浓度	度(mg/L)	最大污染》	原强(g/s)
	· · · · · · · · · · · · · · · · · · ·	产生	处理后	产生	处理后
1	SS	3000	70	1.8	0.042
2	石油类	20	5	0.012	0.003
3	污水量		1.8t/d(次)。	0.036t/分钟	

表 5.1.1-3 项目施工机械冲洗水污染物产排情况

5.1.3 施工期声环境影响

项目施工期主要高噪声源有挖掘机、推土机、搅拌机等各类施工机械及各种运输车辆等,各施工阶段均有大量的机械设备于现场运行,单体设备声源声级在75~94dB之间。

除各种运输车辆外,其余高噪声设备可视为固定声源。因此,评价将施工机械 噪声作为点声源处理,在不考虑其他因素情况下,施工机械噪声预测模式如下:

$$L_p(\mathbf{r}) = L_p(\mathbf{r}_0) - 20\lg(\mathbf{r}/r_0)$$

式中: Lp(r0)---设备源声压级, dB;

Lp(r)---距离 r 预测点声压级, dB。

以各种施工机械噪声级为基础,通过计算得出仅考虑距离衰减时,各种施工机械噪声的影响距离,详见表 5.1.1-4。

		噪声				位于声	源不同距	喜 数的	噪声值			
	设备	级	25m	50m	75m	100m	150m	200	250	300	350	400
		- 级	23111	30111	/3111	100111	130111	m	m	m	m	m
	挖掘机	78~85	71	65	61	59	55	53	51	49	48	47
	推土机	78~93	79	73	69	67	63	61	59	57	56	55
	搅拌机	75~88	74	68	64	62	58	56	54	52	51	50
施工	气锤	82~92	78	72	68	66	62	60	58	56	55	54
机械	砼破碎机	85~90	76	70	66	64	60	58	56	54	53	52
	卷扬机	75~88	74	68	64	62	58	56	54	52	51	50
	钻机	87~90	80	74	70	68	64	62	60	58	57	56
	压桩机	75	61	55	51	49	45	43	41	39	38	37
运输 车辆	载重汽车	80~94	76	70	66	64	60	58	56	54	53	52

表 5.1.1-3 项目施工机械冲洗水污染物产排情况

由表 5.1.1-3 可知,项目昼间施工机械噪声在距施工场地 150m 以外达到《建筑施工场界环境噪声排放标准》(GB12523-2011)限值,夜间一般不进行施工。根据周边居民点分布,居民点均处于厂外或蒸汽管线 150m,受施工噪声影响较小。

5.1.4 施工期固废影响

施工期的固体废物主要为施工人员的生活垃圾和施工作业固体废物。

(1) 施工人员生活垃圾

本项目施工人员为 15 人,生活垃圾产生量为 7.5kg/d,收集后由当地环卫部门统一处理,对环境卫生影响较小。

(2) 施工作业固废

本项目施工作业固体废物主要为建筑模板、建筑材料下脚料、断残钢筋头、包装袋等,均可进行回收综合利用,施工单位只要按照设计方案实施,加强管理,建筑垃圾和生活垃圾分类堆放,严禁将垃圾倾倒入周边水体,及时清运处置,可将固废对环境的影响可降至最低,也不会对当地环境卫生造成明显的不良影响。

5.1.5 施工期生态环境影响

(1) 工程建设对自然景观影响分析

本项目随着工程的基础设施的建设,在路基施工中的填方、取土等一系列的施工活动,形成裸露的边坡、取土、弃土场等一些人为的景观,造成与周围自然景观的不相协调。在本工程建设期和运营前期应及时投入绿化工作,并提前做好厂区内外的绿化规划工作,在建设过程中,不断根据本厂及周围环境的发展情况及时调整

绿化方案,以达到与周围协调,改善区域生态环境。加强项目周围的绿化,以便恢 复区域生态环境。

(2) 植被环境影响分析

项目厂区现状已平整,项目周边山体上主要分布的是马尾松林及竹林。项目施工建设期产生噪声和废气、废水等污染以及人类活动增强也可能会对项目周边的植物生长造成一定的不利影响。

经分析,混凝土搅拌站粉尘、扬尘和施工机车尾气是工程施工期影响环境空气的主要污染物,在正常风速下,施工场地粉尘可使周围空气中 TSP 浓度明显升高的影响范围一般为 50~100m。在水泥混凝土制备过程中,如果不实行封闭式除尘作业,则将产生严重的粉尘污染。施工场地粉尘主要来源于平整场地、开挖基础、运输车辆和施工机械等各种施工作业过程中产生的扬尘和逸散尘,其中扬尘以工程汽车行驶扬尘为主,占 60%以上。此外,施工期还有各种燃油机械设备运转和产生的含有少量烟尘、NO2、CO、THC(烃类)等废气。粉尘污染对植物的影响主要表现在对作物光合作用的影响上。粒径大于 1μm 的颗粒物在扩散过程中可自然沉降,吸附于植物叶片上,阻塞气孔,影响生长,使叶片褪色、变硬,植物生长不良。但由于本项目施工期较短,其污染物排放量不大,施工完成后就会消失。因此施工期的大气污染对植物影响有限。

(3) 野生动物资源的影响

本项目所在区域土地利用强度大,人类活动频繁,区内已不为鸟类主要活动场 所,项目建设不会造成物种的消失,仅会使野生动物在区域内重新分布。

(4) 土壤环境影响分析

本项目施工临时用地拟布设在工程用地范围内,因此不会对工程区外的土壤环境造成局地性破坏和干扰。工程永久占地改变了土地的使用功能和地表覆盖层类型和性质。施工过程中,各种机械设备和车辆排放的废气与油污固体废物、施工机具车辆的洗污水、各场站排放的生活污水等,也将对土壤环境产生一定的影响。厂区开挖、建设工程的施工活动要进行开挖地表和地面建设,造成施工区域内的地表扰动,从而新增一定量的土方量。

同时在降雨、风力作用下,工程施工产生的水土流失可能直接流入周边土地,改变土壤的性质,土壤肥力下降,从而影响植被生长。若不采取措施有效遏制水土

流失现象的发生,将使土壤中的氮、磷等有机物及无机盐含量迅速下降,土壤动植物、微生物以及它们的衍生资源减少,土层变浅,还可能出现沙化、酸化,从而使立地条件恶化。

5.2 运营期环境影响评价

5.2.1 大气环境影响评价

5.2.1.1 地面气象资料来源

本评价采用的是沙县气象站(58826)资料,气象站位于福建省三明市沙县虬江街道办事处洋坊村火厝村(小山顶),地理坐标北纬 26°24′、东经 117.80°,海拔 120.6米,为国家一般气象站。沙县气象站距项目 18.9km,是距项目最近的国家气象站,拥有长期的气象观测资料,以下资料根据 2004-2023 年气象数据统计分析。观测项目包括气温、气压、相对湿度、风速和风向、降水、日照、蒸发量等。

5.2.1.2 近 20 年气象调查

1、气象概况

5.2.1.3 大气环境影响预测与评价

- 1、预测内容
- (1) 预测因子
- SO₂、NO₂、PM₁₀、PM_{2.5}、汞、NH₃。
 - (2) 预测范围

本项目评价等级为一级,一级评价项目根据建设项目排放污染物的最远影响距离 $(D_{10\%})$ 确定大气环境影响评价范围。即以项目厂址为中心区域,自厂界外延 $D_{10\%}$ 的矩形区域作为大气环境影响评价范围。本项目最远影响距离($D_{10\%}$)为 0.2km<2.5km,本项目价范围为厂址为中心,边长 5km 的矩形区域。

2、预测模型选择及参数

(1) 评价基准年选取

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),选择近3年中数据相对 完整的1个日历年作为评价基准年。根据资料收集情况,选择2023年作为评价基准年。

(2) 预测模型选择

根据气象统计资料,不存在"风速≤0.5 m/s 的持续时间超过 72 h"和"近 20 年统计的 全年净风(风速≤0.2 m/s)超过 35%"情况。本项目不存在岸边熏烟,且估算的最大 1h

平均质量浓度未超过环境质量标准。对照《环境影响评价技术导则 大气环境》 (HJ/T2.2-2018) "8.5.2 预测模型选取的其他规定",本评价无需采用 CALPUFF 模型进行进一步模拟。

本次评价采用《环境影响评价技术导则 大气环境》(HJ2.2-2018)中推荐模式 AERMOD 模型开展进一步预测一次污染物。本次大气环境影响评价的数值预测采用石 家庄环安科技有限公司开发的 AERMODSYSTEM(环安大气环境影响评价系统)。

本项目 SO_2+NOx 最大允许排放量共计 171.785t/a (=70.735+101.05) 未超过 500t/a。根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 1 二次污染物评价因子筛选,本项目不进行二次 $PM_{2.5}$ 和二次 O_3 质量浓度预测评价。

(3) 气象条件

项目采用的是沙县气象站(58826)资料,本次收集沙县气象站 20 年统计气象数据、评价基准年 2023 年地面气象数据及高空气象数据。气象资料统计详见章节 5.2.1.1。

(4) 地形数据

地形参数选取涵盖评价范围 5km×5km 的 90m 分辨率地形高程数据,项目所在地地形高程见图 5.2.1-3。

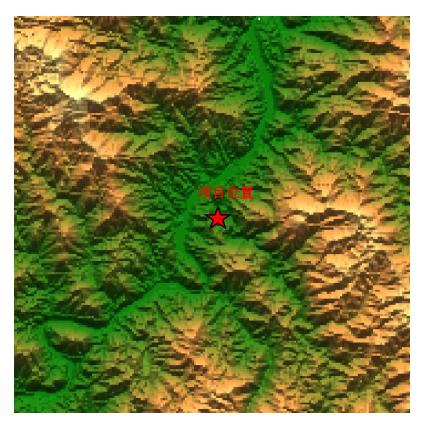


图 5.2.1-3 地形高程图

(5) 地表参数取值

根据项目中心周边地表特征,AERMOD 地表参数分为 1 个区,参照环保部评估中心《大气预测软件系统 AERMOD 简要用户使用手册》和中国气候区划等,地表粗糙度等取值见表 5.2.1-5。

		* : / //- * - : : :	,,	_,	
序号	扇区	时段	正午反照率	波文比	地表粗糙度
1	0~360	冬季(12,1,2 月)	0.35	1.5	1
2	0~360	春季(3,4,5 月)	0.14	1	1
3	0~360	夏季(6,7,8 月)	0.16	2	1
4	0~360	秋季(9,10,11 月)	0.18	2	1

表 5.2.1-5 正午反照率、波文比和粗糙度

(6) 其他参数设置

- ①不考虑建筑物下洗。
- ②不考虑颗粒物干湿沉降和化学转化。
- ③不考虑二次污染物。

3、预测网格点设置及关心点

本次预测包括网格点和环境空气保护目标,其中网格点设置见表 5.2.1-6, 主要环境空气保护目标见表 5.2.1-7。

	-50 612		
预测网格.	点方法	本次预测网格点设置	导则规定设置方法
布点原	 列	网格等间距	网格等间距或近密远疏法
预测网格点网格距	距离源中心<5km	50m	≤100m

表 5.2.1-6 预测网格点设置表

表 5.2.1-7 主要环境保护目标预测点一览表

序	名称	坐板	テ̄/m	保护对象	环境功	相对厂址	相对厂界距
号	1 141	X	Y	不订刈	能区划	方位	离 (m)
1	涌溪村	-343.52	1797.83	居民区,约 2000 人		NW	1744
2	管前村	-1355.61	-277.2	居民区,约 1000 人		W	1152
3	蛋村	439.48	-889.32	居民区,约 200 人	二类区	SE	900
4	后洋村	371.01	1130.35	居民区,约 1000 人		NE	1094
5	澄江楼村	1667.24	2722.29	居民区,约 1500 人		NE	2918

4、预测情景设置

本项目大气预测情景组合见表 5.2.1-8。

表 5.2.1-8 项目大气预测内容和评价内容

序号	污染源	污染源排放 形式	预测因子	预测内容	评价内容
1	新增污染源	正常排放	SO ₂ 、NO ₂	小时浓度 日均浓度	最大浓度占标率

				年均浓度	
			PM ₁₀ PM ₂ 5	日均浓度	
			1 101105 1 1012.5	年均浓度	
			Hg	年均浓度	
			NH ₃	小时浓度	
2	新增污染源+其他在建、拟建污	正常排放	SO ₂ , NO ₂ PM ₁₀ , PM _{2.5}	保证率日均浓度 年均浓度	叠加周边在建拟建、现状以 及区域消减后的保证率日 平均质量浓度和年平均质
	染源-替代污染 源		Hg	年均浓度	量浓度的占标率,或短期浓
	<i>₩</i> ⊼		NH ₃	小时浓度	度的达标情况
3	新增污染源	非正常排放	SO_2 , NO_2 , PM_{10}	1h 平均质量浓度	最大浓度占标率
4	新增污染源	正常排放	PM ₁₀ 、PM _{2.5} 、 SO ₂ 、NO ₂ 、Hg、 NH ₃	短期浓度	大气环境防护距离

5、现状本底取值

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),对采用补充监测数据进行现状评价的,取各污染物不同评价时段监测浓度的最大值,作为评价范围内环境空气保护目标及网格点环境质量现状浓度。对于有多个监测点位数据的,先计算相同时刻各监测点位平均值,再取各监测时段平均值中的最大值。

$$C_{\text{现状}(x,y)} = \text{MAX}\left[\frac{1}{n}\sum_{j=1}^{n}C_{\text{监测}(j,t)}\right]$$

式中:

 $C_{\text{WH}(x,y)}$ ——环境空气保护目标及网格点(x,y)环境质量现状浓度, $\mu g/m^3$;

 $C_{\text{EM}(x,y)}$ ——第 j 个监测点位在 t 时刻环境质量现状浓度(包括 1h 平均、8h 平均或日平均质量浓度), $\mu g/m^3$;

n——现状补充监测点位数。

本项目基本污染物背景浓度来自 2023 年逐日监测数据,特征污染物汞、氨采用补充监测的数据作为背景浓度。

6、污染源计算清单

(1) 本项目废气污染源

根据项目废气源强计算,项目运营期新增各污染源排放清单详见表 5.2.1-9、表 5.2.1-10 和表 5.2.1-11。

(2) 评价范围内在建或拟建项目污染源

项目调查期间, 园区内无在建或拟建项目。

(3) 评价范围内拟替代污染源

本项目建成后将替代园区现有 9 家企业的 10 台锅炉/导热油炉,替代源污染物排放见表 5.2.1-12。

表 5.2.1-9 本项目新增点源参数表(正常排放)

名称	排气管 中心生		排气筒 底部海		排气 筒出	烟气流速/	出口温度	年排放小	排放工况	污染物排放速率/(kg/h)					
12110	X	Y	拔高度 /m	向及 /m	口内 径/m	(m/s)	/°C	时数/h	711 22.50	PM_{10}	PM _{2.5}	SO_2	NOx	汞	氨
锅炉烟囱	120.3	-24.01	106.06	45	2.2	16.24	60	8000	正常工况	0.586	0.293	3.187	10.105	5.6×10 ⁻⁵	0.576
粉尘排气 筒 DA001	194.97	-52.26	102.19	15	0.5	2.8	25	8000	正常工况	0.070	-	-	-	-	-
粉尘排气 筒 DA002	104.15	20.39	107.75	15	0.5	2.8	25	8000	正常工况	0.035	-	-	-	-	-
粉尘排气 筒 DA003	158.64	-46.21	103.86	15	0.5	2.8	25	8000	正常工况	0.030	-	-	-	-	1
粉尘排气 筒 DA004	71.86	2.23	116.19	15	0.5	2.8	25	8000	正常工况	0.015	-	-	-	-	1
粉尘排气 筒 DA005	140.48	10.3	103.6	15	0.5	2.8	25	8000	正常工况	0.079	-	-	-	-	-
粉尘排气 筒 DA006	138.46	-19.97	104.5	15	0.5	2.8	25	8000	正常工况	0.005	-	-	-	-	-

表 5.2.1-10 本项目新增面源参数表(正常排放)

名称	面源坐	标/m	面源海拔	面源长	面源宽	方向角/°	面源有效排	年排放小	排放	污染物	排放速率/
石柳	X	Y	高度/m	度/m	度/m	刀叫用/*	放高度/m	时数/h	工况	17条例	(kg/h)
破碎楼	183.85	-53.63	102.8	8	18.6	20	8	8000	正常	PM ₁₀	0.087
炉前煤仓	93.37	22.71	110.63	5	18.26	21	5	8000	正常	PM ₁₀	0.087
生物质料棚	100.43	-81.9	108.59	5	23.66	92	2	8000	正常	PM ₁₀	0.038
炉前生物质仓	53.78	-4.15	120.9	5	18.58	25	5	8000	正常	PM ₁₀	0.038
灰库	131.54	9.99	104.61	5	15.29	17	5	8000	正常	PM ₁₀	0.199
石灰石粉仓	131.54	-16.87	105.04	5	9.31	15	5	8000	正常	PM ₁₀	0.011
氨水罐	94.78	-23.94	109.72	5	5	20	1	8000	正常	氨	0.018

表 5.2.1-11 项目非正常工况废气排放量核算表

非正常排放源	非正常排放原因	污染物	非正常排放速率/(kg/h)	年发生频次/次	单次持续时间
	旋风-布袋除尘器运行故障	颗粒物	6.63	1×10 ⁻⁵	2h
锅炉烟囱	石灰石-石膏脱硫塔运行故障	SO_2	41.91	1×10 ⁻⁵	2h
	SNCR-SCR 耦合式脱硝装置运行故障	NOx	176.84	1×10 ⁻⁵	2h

表 5.2.1-12 监测期间拟替代大气污染源一览表

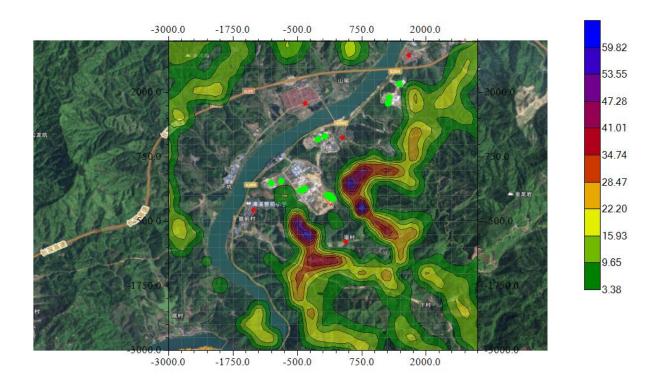
序		排烟量	排气	排气	排气温	排气筒坐	标 (m)	排气筒底部海	年排放	烟尘排	SO ₂ 排放	NOx 排
F 号 	单位名称	行列里 (m³/h)	简高 度(m)	筒直 径(m)	度(℃)	X	Y	拔高度 /m	小时数 /h	放速率 (kg/h)	速率 (kg/h)	放速率 (kg/h)
1	福建沙县青州日化有限公 司	20000	50	1.4	40	-107.25	1093.9	104.26	8000	0.042	0.109	0.212
2	福建省沙县德利纸业有限 公司	20000	45	2	130	-359.53	137	101.03	8000	3.6845	24.5632	24.5632
3	福建楚兴药业有限公司	5642	15	0.6	100	-1014.59	253.16	116.59	8000	0.026	0.026	0.206
4	福建铭峰高分子有限公司	10000	35	0.5	45	-808.09	284.93	120.34	8000	0.129	0.286	0.573
5	福建民祥化工新材料有限 公司(巴汉夫)	40000	50	2.0	100	-445.43	108.37	122.33	8000	0.762	4.2	2.94
6	福建三明合力新材料科技 有限公司	10000	42	1	150	1287.82	1909.21	134.45	8000	2.19	5.45	10.9
7	福建中闽大地纳米新材料 有限公司	30000	42	0.7	55	1253.88	1790.45	141.64	8000	0.22	0.157	1.464
8	沙县盛春纸业有限公司	6000	45	1.0	25	33.37	1155.32	108.32	8000	0.625	2.25	1.8
9	福建远润生物科技有限公 司	513	15	0.13	150	1482.93	2172.2	137.55	8000	0.007	0.009	0.069

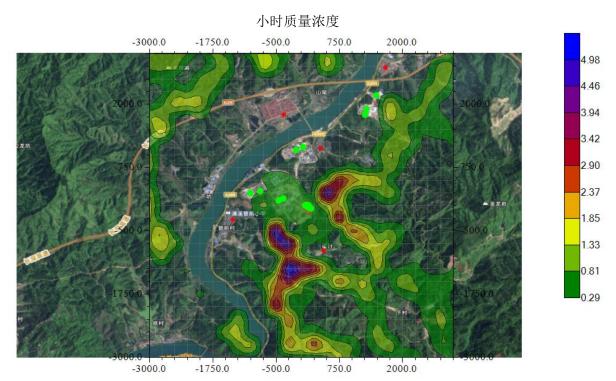
5.2.1.4 大气环境影响结果

1、正常排放新增污染源浓度贡献值预测结果

①SO₂预测结果分析

最大小时浓度贡献值:各环境空气保护目标,预测最大小时浓度贡献值为 0.26μg/m³, 占标率为 0.05%, 出现在蛋村。评价区网格点内最大小时浓度贡献值 2.17μg/m³, 占标率 0.43%, SO₂ 预测浓度能满足评价标准要求。


最大日均浓度贡献值:各保护目标中,预测最大日均浓度贡献值 0.11µg/m³,占标率为 0.07%,出现在蛋村。评价区网格点内最大日均浓度贡献值 2.92µg/m³,占标率为 1.95%, SO₂ 预测浓度能满足评价标准要求。


最大年均浓度贡献值:各保护目标中,预测最大年均浓度贡献值为 0.06µg/m³,占标率为 0.09%,出现在蛋村。评价区内最大年均浓度贡献值 0.91µg/m³,占标率为 1.52%, SO₂ 预测浓度能满足评价标准要求。

SO2贡献质量浓度等值线分布图 5.2.1-4。

表 5.2.1-13 项目贡献质量浓度预测结果表(SO₂)

序	浓度类型	点位名称	浓度增量	出现时间	占标率	评价标准	达标情
号	70人之人主	W ET-HAM	(ug/m ³)	Щ-У0-41 I-4	(%)	(ug/m ³)	况
		管前村	0.20	2023/03/25 11:00	0.04	500	达标
		蛋村	0.26	2023/03/24 12:00	0.05	500	达标
1	小时值	涌溪村	0.10	2023/08/25 07:00	0.02	500	达标
1	小加頂	后洋村	0.14	2023/10/23 07:00	0.03	500	达标
		澄江楼村	0.05	2023/08/07 07:00	0.01	500	达标
		网格最大值	2.17	2023/07/30 23:00	0.43	500	达标
		管前村	0.08	2023/03/25	0.06	150	达标
		蛋村	0.11	2023/07/28	0.07	150	达标
2	日均值	涌溪村	0.05	2023/07/22	0.03	150	达标
2	口均阻	后洋村	0.06	2023/09/16	0.04	150	达标
		澄江楼村	0.03	2023/05/31	0.02	150	达标
		网格最大值	2.92	2023/03/08	1.95	150	达标
		管前村	0.04	平均值	0.07	60	达标
		蛋村	0.06	平均值	0.09	60	达标
3	年均值	涌溪村	0.02	平均值	0.04	60	500 达标 500 达标 500 达标 500 达标 150 达标 150 达标 150 达标 150 达标 150 达标 60 达标
3	十均阻	后洋村	0.03	平均值	0.06	60	达标
		澄江楼村	0.01	平均值	0.02	60	达标
		网格最大值	0.91	平均值	1.52	60	达标

日均质量浓度

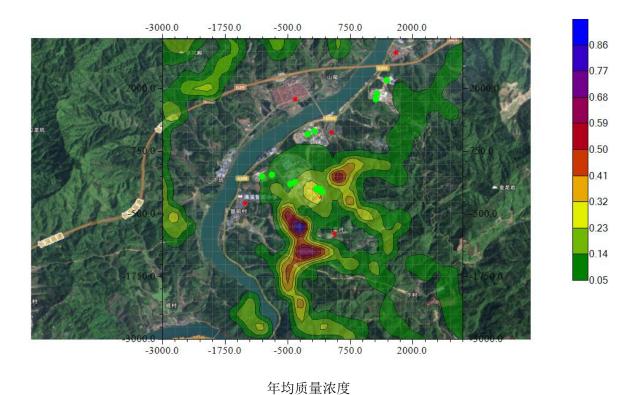
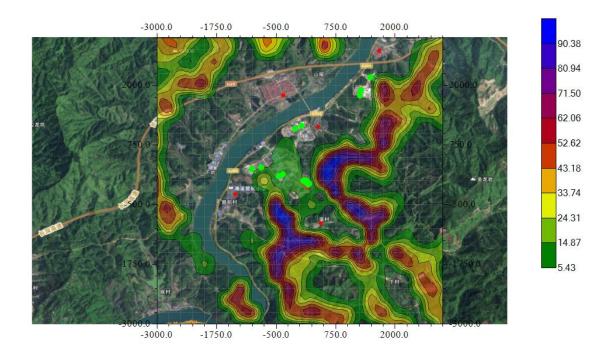


图 5.2.1-4 SO₂ 贡献质量浓度等值线分布图(ug/m³)

②NOx 预测结果分析

最大小时浓度贡献值:各环境空气保护目标,预测最大小时浓度贡献值 0.74µg/m³, 占标率 0.37%,出现在蛋村。评价区网格点内最大小时浓度贡献值 6.18µg/m³,占标率 3.09%,NOx 预测浓度能满足评价标准要求。


最大日均浓度贡献值:各保护目标中,预测最大日均浓度贡献值 0.31µg/m³,占标率为 0.39%,出现在蛋村。评价区网格点内最大日均浓度贡献值 6.90µg/m³,占标率为 8.63%,NOx 预测浓度能满足评价标准要求。

最大年均浓度贡献值:各保护目标中,预测最大年均浓度贡献值为0.16µg/m³,占标率为0.40%,出现在蛋村。评价区内最大年均浓度贡献值2.36µg/m³,占标率为5.89%,NOx预测浓度能满足评价标准要求。

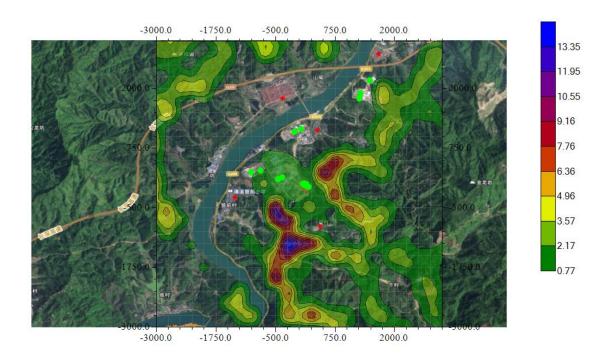
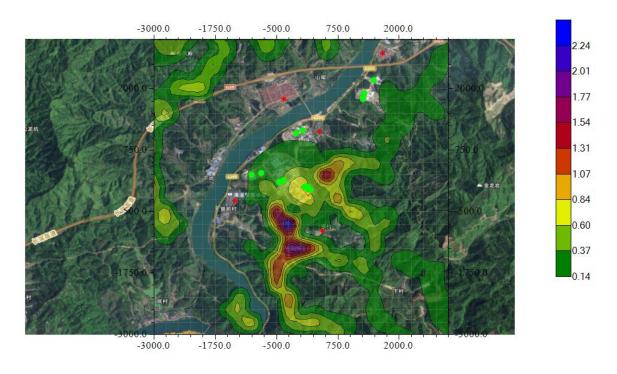

NOx 贡献质量浓度等值线分布图 5.2.1-5。

表 5.2.1-14 项目贡献质量浓度预测结果表(NOx)


序	外中米型	上於女物	浓度增量	ा। मन १५५ रेन	占标率	评价标准	达标情
号	浓度类型	点位名称	(ug/m³)	出现时间	(%)	(ug/m ³)	况
		管前村	0.57	2023/03/25 11:00	0.29	200	达标
		蛋村	0.74	2023/03/24 12:00	0.37	80	达标
1	小时值	涌溪村	0.28	2023/08/25 07:00	0.14	40	达标
1	7,111,11日	后洋村	0.40	2023/10/23 07:00	0.20	200	达标
		澄江楼村	0.13	2023/08/07 07:00	0.07	80	达标
		网格最大值	6.18	2023/07/30 23:00	3.09	40	达标
		管前村	0.24	2023/03/25	0.29	200	达标
	日均值	蛋村	0.31	2023/07/28	0.39	80	达标
2		涌溪村	0.15	2023/07/22	0.18	40	达标
	口炒阻	后洋村	0.18	2023/09/16	0.23	200	达标
		澄江楼村	0.07	2023/05/31	0.09	80	达标
		网格最大值	6.90	2023/02/06	8.63	40	达标
		管前村	0.12	平均值	0.29	200	达标
		蛋村	0.16	平均值	0.40	80	达标
3	左拉店	涌溪村	0.06	平均值	0.16	40	达标
3	年均值	后洋村	0.10	平均值	0.24	200	达标
		澄江楼村	0.03	平均值	0.07	80	达标
		网格最大值	2.36	平均值	5.89	40	达标

1小时质量浓度

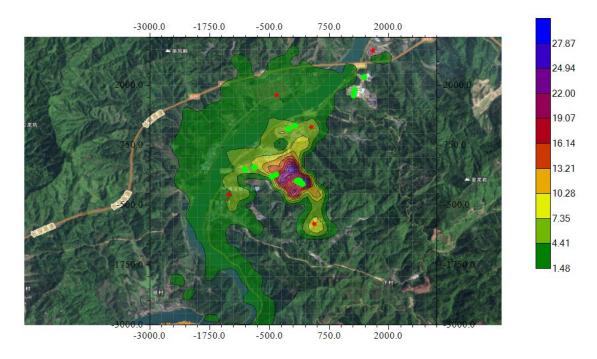
日均质量浓度

年均质量浓度

图 5.2.1-5 NOx 贡献质量浓度等值线分布图(ug/m³)

③PM₁₀预测结果分析

最大日均浓度贡献值:各保护目标中,预测最大日均浓度贡献值 3.08μg/m³,占标率为 2.05%,出现在蛋村。评价区网格点内最大日均浓度贡献值 19.59μg/m³,占标率为 13.06%, PM₁₀ 预测浓度能满足评价标准要求。


最大年均浓度贡献值:各保护目标中,预测最大年均浓度贡献值为 0.84μg/m³,占标率为 1.20%,出现在蛋村。评价区内最大年均浓度贡献值 7.56μg/m³,占标率为 10.80%, PM₁₀ 预测浓度能满足评价标准要求。

PM₁₀ 贡献质量浓度等值线分布图 5.2.1-6。

	TO THE TOTAL PROPERTY OF THE P									
序	浓度类型	点位名称	浓度增量	出现时间	占标率	评价标准	达标情			
号	极及关望	点位右物 	(ug/m ³)		(%)	(ug/m³)	况			
		管前村	2.00	2023/12/31	1.34	150	达标			
	1 日均值	蛋村	3.08	2023/03/14	2.05	70	达标			
1		涌溪村	1.81	2023/12/01	1.21	150	达标			
1	日杪阻	后洋村	2.26	2023/10/01	1.51	70	达标			
		澄江楼村	0.39	2023/01/14	0.26	150	达标			
		网格最大值	19.59	2023/11/18	13.06	70	达标			
2	2 欠损债	管前村	0.67	平均值	0.96	150	达标			
2	年均值	蛋村	0.84	平均值	1.20	70	达标			

表 5.2.1-15 项目贡献质量浓度预测结果表 (PM₁₀)

	涌溪村	0.45	平均值	0.64	150	达标
	后洋村	0.56	平均值	0.79	70	达标
	澄江楼村	0.08	平均值	0.12	150	达标
	网格最大值	7.56	平均值	10.80	70	达标

日均质量浓度

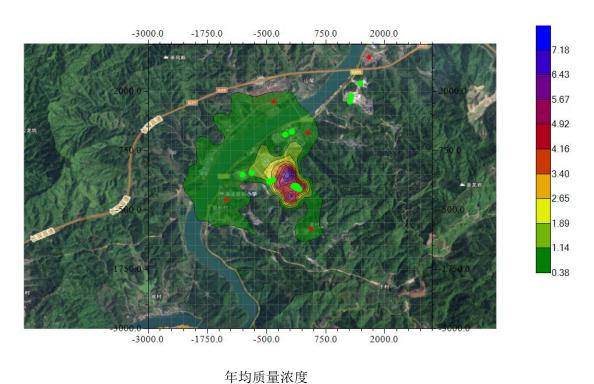
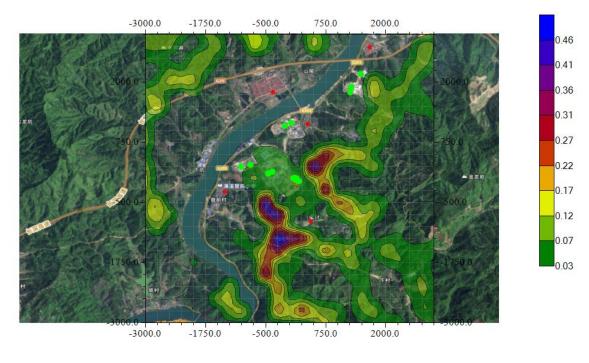


图 5.2.1-6 PM₁₀ 贡献质量浓度等值线分布图(ug/m³)

④PM_{2.5} 预测结果分析


最大日均浓度贡献值:各保护目标中,预测最大日均浓度贡献值 0.01µg/m³,占标率为 0.01%,出现在蛋村。评价区网格点内最大日均浓度贡献值 0.27µg/m³,占标率为 0.36%, PM_{2.5} 预测浓度能满足评价标准要求。

最大年均浓度贡献值:各保护目标中,预测最大年均浓度贡献值为 0.01μg/m³,占标率为 0.01%,出现在蛋村。评价区内最大年均浓度贡献值 0.08μg/m³,占标率为 0.24%, PM_{2.5} 预测浓度能满足评价标准要求。

PM_{2.5} 贡献质量浓度等值线分布图 5.2.1-7。

表 5.2.1-16 项目贡献质量浓度预测结果表 (PM_{2.5})

序	浓度类型	占位分称	浓度增量	山湖時间	占标率	评价标准	达标情
号	水及矢型	点位名称 (ug/m³) 出现时间		(%)	(ug/m ³)	况	
		管前村	0.01	2023/03/25	0.01	75	达标
		蛋村	0.01	2023/07/28	0.01	35	达标
1	 日均值	涌溪村	0.00	2023/07/22	0.01	75	达标
1	日均阻 	后洋村	0.01	2023/09/16	0.01	35	达标
		澄江楼村	0.00	2023/05/31	0.00	75	达标
		网格最大值	0.27	2023/03/08	0.36	35	达标
		管前村	0.00	平均值	0.01	75	达标
		蛋村	0.01	平均值	0.01	35	达标
2	 年均值	涌溪村	0.00	平均值	0.01	75	达标
2	平均阻 一	后洋村	0.00	平均值	0.01	35	达标
		澄江楼村	0.00	平均值	0.00	75	达标
		网格最大值	0.08	平均值	0.24	35	达标

日均质量浓度

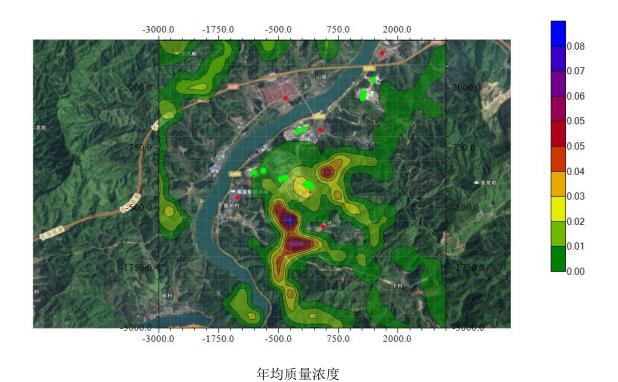


图 5.2.1-7 PM_{2.5} 贡献质量浓度等值线分布图 (ug/m³)

⑤汞预测结果分析

最大年均浓度贡献值:各保护目标,预测最大年均浓度贡献值均为 0.00μg/m³,占标率均为 0.00%,评价区内最大年均浓度贡献值 0.00μg/m³,占标率为 0.00%,汞预测浓度能满足评价标准要求。

汞贡献质量浓度等值线分布图 5.2.1-8。

序	点位名称	浓度类型	浓度增量	出现时间	占标率	评价标准	达标情况
号	总位石 柳 		(ug/m³)	田地町町	(%)	(ug/m³)	心你用 犹
1	管前村	年均值	0.00	平均值	0.00	50	达标
2	蛋村	年均值	0.00	平均值	0.00	50	达标
3	涌溪村	年均值	0.00	平均值	0.00	50	达标
4	后洋村	年均值	0.00	平均值	0.00	50	达标
5	澄江楼村	年均值	0.00	平均值	0.00	50	达标
6	网格最大值	年均值	0.00	平均值	0.00	50	达标

表 5.2.1-17 项目贡献质量浓度预测结果表 (汞)

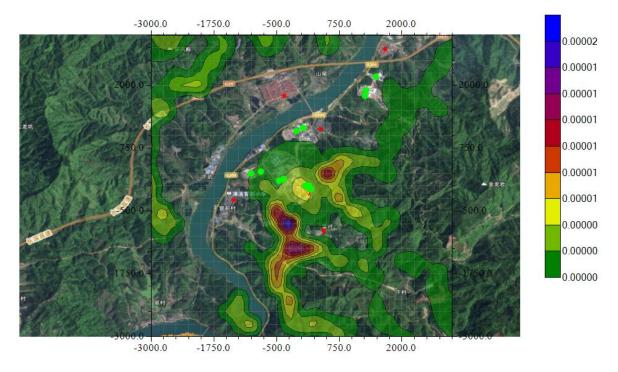


图 5.2.1-8 汞贡献质量浓度等值线分布图 (ug/m³)

⑥ 氨预测结果分析

最大小时浓度贡献值:各保护目标中,预测最大年均浓度贡献值为 0.05µg/m³,占标率为 0.02%,出现在蛋村。评价区内最大年均浓度贡献值 0.39µg/m³,占标率为 0.20%,氨预测浓度能满足评价标准要求。

氨贡献质量浓度等值线分布图 5.2.1-9。

序号	点位名称	浓度 类型	浓度增量 (ug/m³)	出现时间	占标率 (%)	评价标准 (ug/m³)	达标情况
1	管前村	小时值	0.04	2023/03/25 11:00	0.02	200	达标
2	蛋村	小时值	0.05	2023/03/24 12:00	0.02	200	达标
3	涌溪村	小时值	0.02	2023/08/25 07:00	0.01	200	达标
4	后洋村	小时值	0.03	2023/10/23 07:00	0.01	200	达标
5	澄江楼村	小时值	0.01	2023/08/07 07:00	0.00	200	达标
6	网格最大值	小时值	0.39	2023/07/30 23:00	0.20	200	达标

表 5.2.1-18 项目贡献质量浓度预测结果表 (氨)

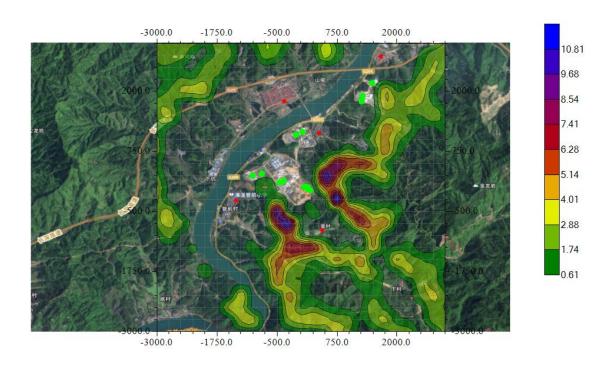
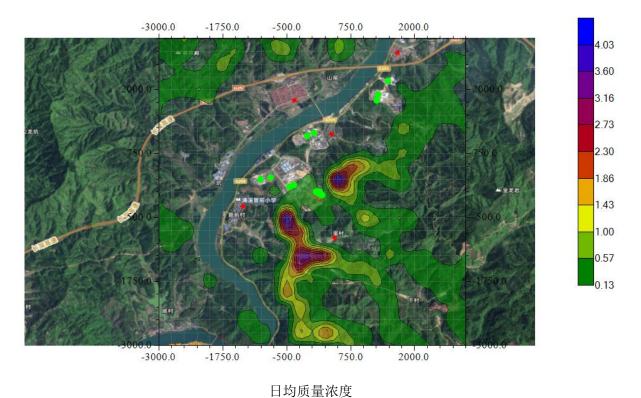


图 5.2.1-9 氨贡献质量浓度等值线分布图(ug/m³)

2、正常排放污染物叠加影响预测结果

本项目新增排放源叠加背景值后(SO_2 、 NO_2 、 PM_{10} 三项污染物扣除替代污染源),环境空气保护目标和网格点各污染物预测值见 5.2.1-18~表 5.2.1-23 所示。

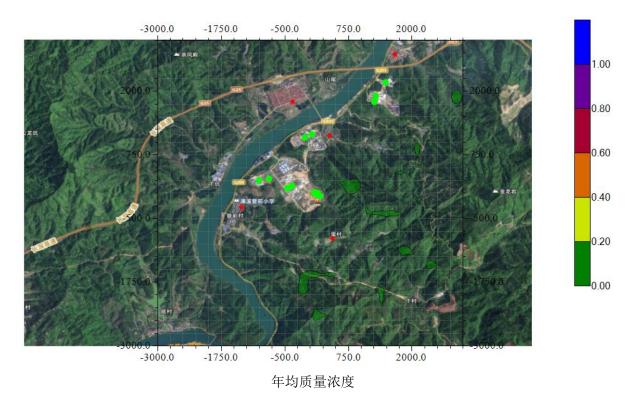
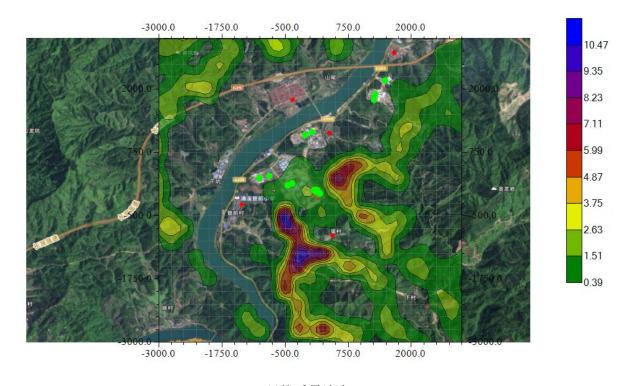

环境空气保护目标: SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 保证率最大日平均质量浓度分别为 $14.89\mu g/m^3$ 、 $28.05\mu g/m^3$ 、 $53.88\mu g/m^3$ 、 $32.01\mu g/m^3$,占标率分别为 9.92%、35.07%、35.92%、42.67%。 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 最大年均质量浓度分别为 $6.32\mu g/m^3$ 、 $14.64\mu g/m^3$ 、 $25.54\mu g/m^3$ 、 $14.51\mu g/m^3$,占标率分别为 10.53%、36.59%、36.49%、41.44%,均满足《环境空气质量标准》(GB3095-2012)的要求。

网格点: SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 保证率最大日平均质量浓度分别为 15μg/m³、30.11μg/m³、63.36μg/m³、32.16μg/m³,占标率分别为 10%、38.63%、42.24%、42.88%。

 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 最大年均质量浓度分别为 $6.47\mu g/m^3$ 、 $15.53\mu g/m^3$ 、 $32.2\mu g/m^3$ 、 $14.58\mu g/m^3$,占标率分别为 10.78%、38.81%、45.99%、41.67%,均满足《环境空气质量标准》(GB3095-2012)的要求。

表 5.2.1-19	叠加后环境质量浓度预测结果表	(SO ₂)
'V' U'= 1 I I		1002

序号	平均时段	预测点	变化值 (ug/m³)	占标率 (%)	现状值 (ug/m³)	叠加值 (ug/m³)	占标率 (%)	达标 情况
		管前村	-0.55	-0.37	15.00	14.45	9.63	达标
	34-1 000/	蛋村	-0.18	-0.12	15.00	14.82	9.88	达标
1	叠加后 98% 保证率日均	涌溪村	-0.36	-0.24	15.00	14.64	9.76	达标
1		后洋村	-0.70	-0.47	15.00	14.30	9.53	达标
	700人文 田	澄江楼村	-0.11	-0.08	15.00	14.89	9.92	达标
		网格最大值	0.00	0.00	15.00	15.00	10.00	达标
		管前村	-0.17	-0.29	6.42	6.25	10.41	达标
		蛋村	-0.10	-0.17	6.42	6.32	10.53	达标
,	左亚	涌溪村	-0.31	-0.52	6.42	6.11	10.18	达标
2	年平均	后洋村	-0.57	-0.96	6.42	5.85	9.74	达标
		澄江楼村	-0.17	-0.28	6.42	6.25	10.42	达标
		网格最大值	0.05	0.08	6.42	6.47	10.78	达标

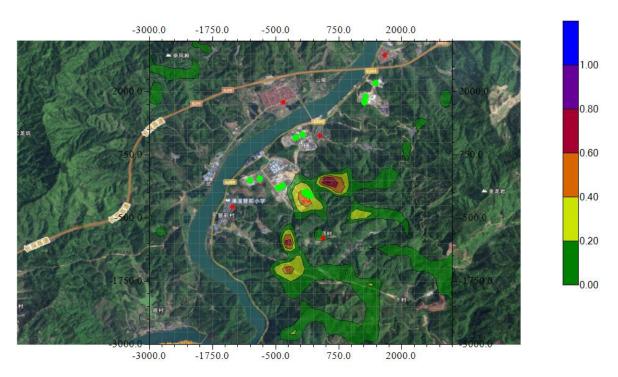
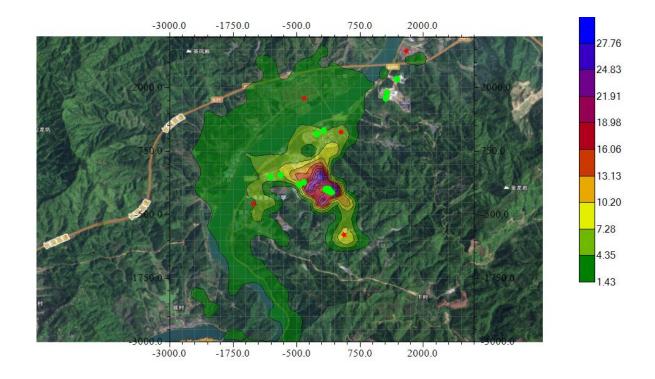

图 5.2.1-18 SO2 叠加后环境质量浓度等值线分布图 (ug/m³)

表 5.2.1-20 叠加后环境质量浓度预测结果表 (NO₂)

序号	平均时段	预测点	变化值 (ug/m³)	占标率 (%)	现状值 (ug/m³)	叠加值 (ug/m³)	占标率 (%)	达标 情况
		管前村	-0.05	-0.06	28.00	27.95	34.94	达标
	X I P 2007	蛋村	0.05	0.07	28.00	28.05	35.07	达标
1	叠加后 98% 保证率日均	涌溪村	-0.14	-0.17	28.00	27.86	34.83	达标
1		后洋村	-0.39	-0.48	28.00	27.61	34.52	达标
		澄江楼村	-0.13	-0.16	28.00	27.87	34.84	达标
		网格最大值	0.11	0.13	30.00	30.11	37.63	达标
		管前村	-0.11	-0.28	14.67	14.56	36.39	达标
		蛋村	-0.03	-0.08	14.67	14.64	36.59	达标
	年平均	涌溪村	-0.37	-0.92	14.67	14.30	35.76	达标
2	平丁均 	后洋村	-0.53	-1.33	14.67	14.14	35.35	达标
		澄江楼村	-0.28	-0.71	14.67	14.39	35.97	达标
		网格最大值	0.86	2.14	14.67	15.53	38.81	达标

日均质量浓度



年均质量浓度

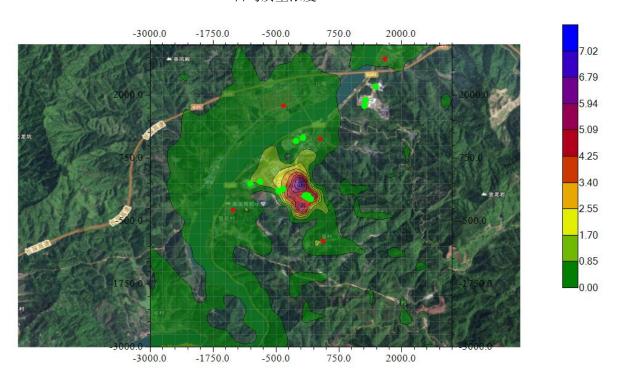
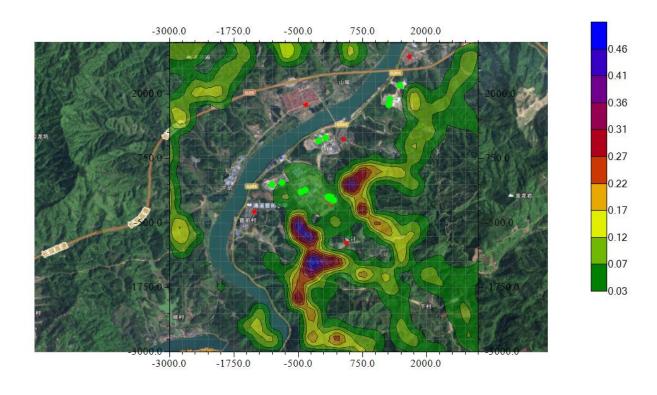

图 5.2.1-19 NO₂ 叠加后环境质量浓度等值线分布图 (ug/m³)

表 5.2.1-21 叠加后环境质量浓度预测结果表 (PM₁₀)

序号	平均时段	预测点	变化值 (ug/m³)	占标率 (%)	现状值 (ug/m³)	叠加值 (ug/m³)	占标率 (%)	达标 情况
		管前村	0.11	0.07	53.00	53.11	35.40	达标
	34-1 000/	蛋村	3.04	2.03	50.00	53.04	35.36	达标
1	叠加后 98% 保证率日均	涌溪村	-0.03	-0.02	53.00	52.97	35.31	达标
1	浓度值	后洋村	-0.12	-0.08	54.00	53.88	35.92	达标
		澄江楼村	-0.04	-0.03	53.00	52.96	35.31	达标
		网格最大值	12.36	8.24	51.00	63.36	42.24	达标
		管前村	0.61	0.88	24.75	25.36	36.23	达标
		蛋村	0.79	1.13	24.75	25.54	36.49	达标
2	年平均	涌溪村	0.34	0.49	24.75	25.09	35.84	达标
2	十二十二	后洋村	0.37	0.53	24.75	25.12	35.88	达标
		澄江楼村	0.01	0.02	24.75	24.76	35.38	达标
		网格最大值	7.45	10.64	24.75	32.20	45.99	达标

日均质量浓度



年均质量浓度

图 5.2.1-20 PM₁₀ 叠加后环境质量浓度等值线分布图 (ug/m³)

表 5.2.1-22 叠加后环境质量浓度预测结果表 (PM_{2.5})

序号	平均时段	预测点	变化值 (ug/m³)	占标率 (%)	现状值 (ug/m³)	叠加值 (ug/m³)	占标率 (%)	达标 情况
		管前村	0.01	0.01	32.00	32.01	42.67	达标
	34-1 000/	蛋村	0.00	0.01	32.00	32.00	42.67	达标
1	叠加后 98% 保证率日均	涌溪村	0.00	0.00	32.00	32.00	42.67	达标
1	浓度值	后洋村	0.01	0.01	32.00	32.01	42.67	达标
		澄江楼村	0.00	0.00	32.00	32.00	42.67	达标
		网格最大值	0.16	0.22	32.00	32.16	42.88	达标
		管前村	0.00	0.01	14.50	14.50	41.44	达标
		蛋村	0.01	0.01	14.50	14.51	41.44	达标
,	年平均	涌溪村	0.00	0.01	14.50	14.50	41.43	达标
2	十一均	后洋村	0.00	0.01	14.50	14.50	41.44	达标
		澄江楼村	0.00	0.00	14.50	14.50	41.43	达标
		网格最大值	0.08	0.24	14.50	14.58	41.67	达标

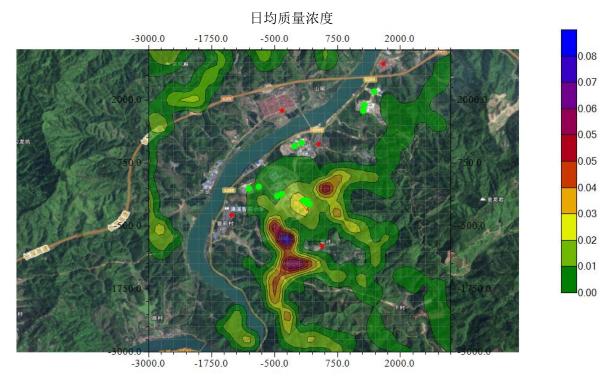


图 5.2.1-21 PM_{2.5}叠加后环境质量浓度等值线分布图(ug/m³)

年均质量浓度

表 5.2.1-23 叠加后环境质量浓度预测结果表 (汞)

序	预测点	平均时段	变化值	占标率	现状值	叠加值	占标率	达标情
号	., ., ., ., ., ., ., ., ., ., ., ., ., .	, , , , ,	(ug/m ³)	(%)	(ug/m ³)	(ug/m ³)	(%)	况
1	管前村	年均值	0.00	0.00	0.00	0.00	0.00	达标
2	蛋村	年均值	0.00	0.00	0.00	0.00	0.00	达标
3	涌溪村	年均值	0.00	0.00	0.00	0.00	0.00	达标
4	后洋村	年均值	0.00	0.00	0.00	0.00	0.00	达标
5	澄江楼村	年均值	0.00	0.00	0.00	0.00	0.00	达标
6	网格最大	年均值	0.00	0.00	0.00	0.00	0.00	计标
6	值	牛刈徂						达标

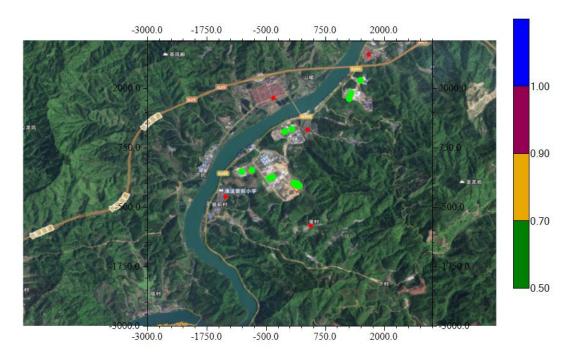
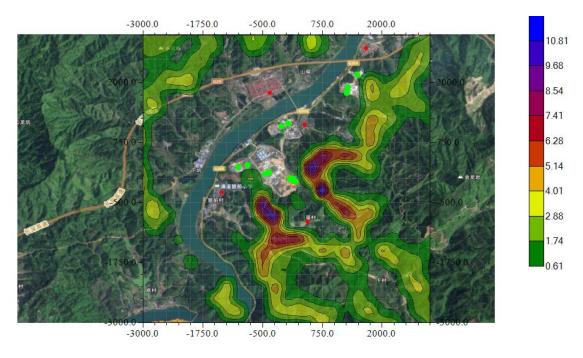



图 5.2.1-22 汞叠加后环境质量浓度等值线分布图(ug/m³)

表 5.2.1-24 叠加后环境质量浓度预测结果表 (氨)

序			变化值	占标率	现状值	叠加值	占标率	达标情
号			(ug/m^3)	(%)	(ug/m ³)	(ug/m ³)	(%)	况
1	管前村	1 小时值	0.04	0.02	0.05	0.09	0.04	达标
2	蛋村	1 小时值	0.05	0.02	0.05	0.10	0.05	达标
3	涌溪村	1 小时值	0.02	0.01	0.05	0.07	0.03	达标
4	后洋村	1 小时值	0.03	0.01	0.05	0.08	0.04	达标
5	澄江楼村	1 小时值	0.01	0.00	0.05	0.06	0.03	达标
6	网格最大值	1 小时值	0.39	0.20	0.05	0.44	0.22	达标

3、非正常排放新增污染源浓度贡献值预测结果

在非正常工况预测情景下, SO_2 最大小时落地浓度预测结果为 $20.45ug/m^3$,最大占标率为 4.09%; NO_2 最大小时落地浓度预测结果为 $77.67ug/m^3$,最大占标率为 38.83%; PM_{10} 最大小时落地浓度预测结果为 $3.24ug/m^3$,最大占标率为 0.00%。

通过预测计算可见,本项目非正常工况排放情况下 SO₂、NO₂及 PM₁₀ 对周围环境影响增大,事故性排放的影响是较大的,预防事故发生较好的方法为安装大气污染源自动连续监测系统,对燃煤烟气实时监测;同时通过设置 DCS 系统,实时监控烟气处理系统的运行情况,以确保烟气污染物达标排放,一旦出现异常事故排放,及时处理。另外,还要从项目的日常运行管理上,加强对污染防治设施的日常运行管理和维护,以杜绝事故的发生。

非正常排放新增污染源浓度贡献值预测结果详见表 5.2.1-25。

序号	污染物	预测点	平均时段	浓度增量 (ug/m³)	出现时间	占标率(%)
1		涌溪村	1 小时值	2.17	2023/12/07 10:00	0.43
2		管前村	1 小时值	2.53	2023/02/02 09:00	0.51
3	go.	蛋村	1 小时值	1.09	2023/06/05 07:00	0.22
4	SO_2	后洋村	1 小时值	1.50	2023/01/11 12:00	0.30
5		澄江楼村	1 小时值	0.55	2023/02/14 15:00	0.11
6		网格	1 小时值	20.45	2023/12/15 19:00	4.09

表 5.2.1-25 非正常排放新增污染源浓度贡献值预测结果表

7		涌溪村	1 小时值	8.24	2023/12/07 10:00	4.12
8		管前村	1 小时值	9.61	2023/02/02 09:00	4.80
9	NO	蛋村	1 小时值	4.13	2023/06/05 07:00	2.06
10	NO_2	后洋村	1 小时值	5.71	2023/01/11 12:00	2.86
11		澄江楼村	1 小时值	2.10	2023/02/14 15:00	1.05
12		网格	1 小时值	77.67	2023/12/15 19:00	38.83
13		涌溪村	1 小时值	0.34	2023/12/07 10:00	0.00
14		管前村	1 小时值	0.40	2023/02/02 09:00	0.00
15	PM_{10}	蛋村	1 小时值	0.17	2023/06/05 07:00	0.00
16	PIVI ₁₀	后洋村	1 小时值	0.24	2023/01/11 12:00	0.00
17		澄江楼村	1 小时值	0.09	2023/02/14 15:00	0.00
18		网格	1 小时值	3.24	2023/12/15 19:00	0.00

5.2.1.5 大气污染物年排放量核算

1、有组织排放量核算

项目废气有组织排放量核算情况见表 5.2.1-26。

表 5.2.1-26 大气污染物有组织排放量核算表

序				核算排放浓度	核算排放速率	 核算年排放	
号	排放口编号	污染	物	/ (mg/m ³)	/ (kg/h)	量/(t/a)	
	I		主要排	<u> </u>			
		田岳小子丹加	设计燃料	10	5.106	20.21	
		颗粒物	校核燃料	10	3.264	16.16	
		二氧化硫	设计燃料	35	17.869	70.735	
			校核燃料	35	11.425	56.56	
1	紀州田南	炉烟囱 氮氧化物	设计燃料	50	25.528	101.05	
1	物炉烟囱		校核燃料	50	16.322	80.8	
		汞及其化合	设计燃料	0.05	0.026	0.101	
		物	校核燃料	0.05	0.016	0.081	
		氨	设计燃料	2.28	1.164	4.608	
		安(校核燃料	2.28	0.744	3.684	
		颗粒物				20.21	
				二氧化硫		70.735	
Ξ	主要排放口合计		氮	氢氧化物		101.05	
			汞及	及其化合物		0.101	
				氨		4.608	
			一般排	放口			
1	粉尘排气筒	颗粒	坳	8.73	0.070	0.559	
1	DA001	小火作业	1/4	0.73	0.070	0.557	
2	粉尘排气筒	斯 坎	颗粒物		0.035	0.280	
<u> </u>	DA002	75713	1/4	4.38	0.022	0.200	
3	粉尘排气筒	颗粒	物	3.75	0.030	0.240	
	DA003	7,9(1)			0.020	0.∠40	

4	粉尘排气筒 DA004	颗粒物	1.88	0.015	0.120					
5	粉尘排气筒 DA005	颗粒物	9.92	0.079	0.635					
6	粉尘排气筒	 	0.56 0.005		0.036					
	DA006 -般排放口合计		1.87							
	7X7117X - 1 VI	」 有组织排	颗粒物		1.07					
			颗粒物		22.08					
		_	二氧化硫							
7	有组织排放总计	- S	氮氧化物					氮氧化物 101.05		101.05
		汞及	0.101							
			4.608							

2、无组织排放量核算

项目废气无组织排放量核算情况见表 5.2.1-27。

表 5.2.1-27 大气污染物无组织排放量核算表

ı⇒		产污		主要污染	国家或地方污染物技	非放标准	在排光	
字 号	单元名称	万·万·万·万·万·万·万·万·万·万·万·万·万·万·万·万·万·万·万·	污染物	防治措施	标准名称	浓度限值 /(mg/m³)	年排放 量/(t/a)	
1	破碎楼	破碎	颗粒物	除尘器		1.0	0.699	
2	炉前煤仓	卸料	颗粒物	除尘器	《大气污染物综合排	1.0	0.699	
3	生物质料棚	破碎	颗粒物	除尘器	放标准》	1.0	0.30	
4	炉前生物质仓	卸料	颗粒物	除尘器	(GB16297-1996) 中	1.0	0.30	
5	灰库	卸料	颗粒物	除尘器	表 2 的二级标准限值	1.0	1.588	
6	石灰石粉仓	卸料	颗粒物	除尘器		1.0	0.091	
7	储罐	罐呼吸	氨	密封罐	《恶臭污染物排放标准》(GB14554-1993) 表 1 限值	1.5	0.144	
				无组织排放	总计			
	无组织排放总计				颗粒物			
	九组织排				氨			

3、项目大气污染物年排放量核算

表 5.2.1-28 项目大气污染物年排放量核算表

序号	污染物	年排放量
1	颗粒物	25.757
2	二氧化硫	70.735
3	氮氧化物	101.05
4	汞及其化合物	0.101
5	氨	4.752

4、非正常排放量核算

表 5.2.1-29 项目非正常工况废气排放量核算表

非正常排放源	非正常排放原因	污染物	非正常排 放速率 /(kg/h)	非正常排 放量/(t/单 次)	年发生 频次/ 次	单次 持续 时间	应对措施
	旋风-布袋除尘器 运行故障	颗粒物	6.63	0.013	1×10 ⁻⁵	2h	定期维护和 巡检环保设
锅炉烟 囱	石灰石-石膏脱硫 塔运行故障	SO_2	41.91	0.084	1×10 ⁻⁵	2h	施运行情 况,做好废
	SNCR-SCR 耦合式 脱硝装置运行故障	NOx	176.84	0.354	1×10 ⁻⁵	2h	气设施台账 管理

5.2.1.6 环境防护距离

(1) 大气环境防护距离

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中有关大气环境防护距离 设置的有关规定:对于项目厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染 物短期贡献浓度超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确保大气环境防护区域外的污染物贡献浓度满足环境质量标准。

本项目厂界外短期贡献浓度满足环境质量浓度限值,因此,无需设置大气环境防护 距离。

(2) 卫生防护距离

本项目无组织排放的卫生防护距离参考《大气有害物质无组织排放卫生防护距离推导技术导则》(GB/T 39499-2020)中推荐的卫生防护距离估算公式,具体计算公式如下:

$$\frac{Q_c}{C_{...}} = \frac{1}{A} \left(BL^c + 0.25r^2 \right)^{0.50} L^D$$

式中: C_m---标准浓度限值(一次), mg/m³;

L---工业企业所需卫生防护距离, m;

R---有害气体无组织排放源所在生产单元的等效半径, m;

A、B、C、D---卫生防护距离计算系数;根据项目所在地的气象特征(多年平均风速为 1.09m/s<2m/s,大气污染源构成类别为 I 类)和计算系数表,取 A=400,B=0.01,C=1.85,D=0.78;

Qc---工业企业有害气体无组织排放量可以达到的控制水平,kg/h。 本项目卫生防护距离计算结果见表 5.2.1-30。

无组织面源	面积	污染物	排放速率 kg/h	评价标准 mg/m³	卫生防护距离/m
破碎楼	200m ²	颗粒物	0.087	1.0	9.68 (取 50)
炉前煤仓	64m ²	颗粒物	0.087	1.0	9.68 (取 50)
生物质料棚	1404m ²	颗粒物	0.038	1.0	6.42 (取 50)
炉前生物质仓	6m ²	颗粒物	0.038	1.0	6.42 (取 50)
灰库	15m ²	颗粒物	0.199	1.0	26.68 (取 50)
石灰石粉仓	5m ²	颗粒物	0.011	1.0	5.43 (取 50)
储罐	15m ²	氨	0.018	1.5	28.64 (取 50)

表 5.2.1-30 项目卫生防护距离

(3) 环境防护距离范围

根据本项目的大气环境防护距离、卫生防护距离的计算结果,其防护区域范围详见 图 5.2.1-24。项目环境防护区域内主要为规划工业用地,无现状及规划的居民区、学校、 医院等敏感目标,可满足环境防护距离要求。

图 5.2.1-24 项目卫生防护距离示意图

5.2.1.7 大气环境影响评价结论

(1) 污染物排放达标情况分析

项目废气有组织排放源包括锅炉烟囱、煤仓、炉前料仓、灰库、石灰罐构筑物排气筒。锅炉烟尘、二氧化硫、氮氧化物排放浓度满足锅炉尾气排放执行《关于全面推进锅

炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1 号),每小时 35(含)-65 蒸吨燃煤锅炉超低排放标准(烟尘、二氧化硫、氮氧化物排放浓度分别不高于 10、35、 50毫克/立方米);汞和烟气黑度执行《锅炉大气污染物排放标准》(GB13271-2014) 表 3 中燃煤锅炉大气污染物特别排放限值;氨排放浓度满足限值要求,煤仓、炉前料仓、 灰库、石灰罐构筑物排气筒粉尘排放满足《大气污染物综合排放标准》(GB16297-1996) 中二级排放标准。

(2) 新增污染源浓度贡献值预测分析

本评价选用 2023 年作为预测基准年,项目选址位于环境空气质量现状达标区。 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、 NH_3 、汞及其化合物预测短期浓度贡献值最大浓度占标率为 PM_{10} : 13.06%,小于 100%; SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、汞及其化合物年均浓度最大贡献值占标率为 PM_{10} : 10.8%,小于 30%。

(3) 叠加预测分析

本项目排放的污染物叠加 2023 年监测值和替代污染源影响后,各环境空气保护目标和网格点中 SO₂、NO₂、PM₁₀、PM_{2.5} 保证率最大日均浓度及年平均浓度和 NH₃、汞及其化合物的小时平均浓度均能满足 GB3095《环境空气质量标准》的要求。

(4) 大气环境防护距离

本项目大气预测结果显示, 厂界外所有计算点短期浓度均未超过环境质量浓度限值, 无需设置大气环境防护距离。

(5) 评价结论

综上所述,项目产生的污染物在采取合理的大气污染防治措施后,对周围大气环境影响满足 HJ2.2-2018《环境影响评价技术导则 大气环境》10.1.1 判定标准,环境影响属可接受水平。

建设项目大气环境影响评价自查表见表 5.2.1-31。

-	工作内容	自査项目						
评价等级	评价等级	一级☑		二级□		一级团 二级口 二级口		三级口
与范围	评价范围	边长=50km□		边长=5~50km□			边长=5km☑	
评价因	SO2+NOx 排放量	≥2000t/a□ 500~2000t/a□		<500t/a☑				
子	评价因子			NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、 染物(TSP、汞、氨)			包括二次 PM _{2.5} □ 不包括二次 PM _{2.5} ☑	
评价标 准	评价标准	国家标准团	地	方标准□	附录 D☑		其他标准□	
现状评	评价功能区	一类区口	一类区口		二类区図		一类区和二类区口	

表 5.2.1-31 项目大气环境影响评价自查表

价	评价基准年				(2023)年				
	环境空气质量现 状调查数据来源		行监测数 క□	主管部门	门发布的数据区	1	现	状补充核	- 金测☑
	现状评价		达标区☑			不达	标区		
污染源调 查	调查内容	本项目	目正常排放 目非正常排 见有污染源	放源☑	拟替代的污迹 源□	(4)	拟建	在建、 项目污 源□	区域污染源□
	预测模型	AERM OD☑	ADMS	AUSTA L2000□	EDMS/AED T□	CAI UF	F	网格 模型 □	其他口
	预测范围	边长≥50km□						边长=5k	
	预测因子	预测因子(TSP、SO ₂ 、No			Ox、汞、氨)			舌二次 P l .括二次 l	
	正常排放短期浓 度贡献值		C 本项目最				C 本项目最大占标 率>100%□		
大气环境 影响预测	正常排放年均浓	一类区			C 本项目最大占标率 ≤10%□		C 本项目最大占标 率>10%□		
与评价	度贡献值	二类区		C 本项目最大占标率 ≤30%☑			C 本项目最大占标 率>30%□		
	非正常 1h 浓度 贡献值	非正常持续时长 (2) h		C非正常占标率≤100%□			C 非正常占标 率>100%☑		
	保证率日平均浓 度和年平均浓度 叠加值	(2 叠加达标	<u>.</u>	☑ C 叠		加不达标口		
	区域环境质量的整 体变化情况		k≤-20%☑			k>-2	20%[
环境监测	污染源监测		^Z :(TSP、S 氢、林格曼		有组织》 无组织》				无监测 口
计划	环境质量监测	监测	∥因子: ()	监测点位	2数(<u> </u>)	无监测 ☑
	环境影响		可	以接受 ☑	不可	以接	受 🗆		
评价结论	大气环境防护距离	merch to have			厂界最远 () m			
	污染源年排放量	颗粒物: (25.757) t/a、SO ₂ : (70.735) t/a、N 及其化合物: (0.101) t/a、氨: ()t/a、汞
注: "口"ガ	勺勾选项,填"√";"	()"为	内容填写项	į					

5.2.2 地表水环境影响评价

5.2.2.1 项目排污方案

本项目废水产生量及污染治理措施情况,见表 3.12.2-1。

本项目锅炉排污水以及脱硫系统废水收集全部回用于调湿灰用水, 化水系统除 盐废水收集后全部回用于燃料输送系统冲洗用水, 输送系统冲洗产生的废水收集全 部回用于厂区降尘、绿化灌溉及地面冲洗用水, 上述废水全部回用不外排, 剩余的锅炉定期冲洗废水、冷却系统排污水及一体化净水设施废水作为生产废水收集至沉 淀池处理达标后排入市政污水管网, 进入马铺污水处理厂处理; 职工生活污水经厂

区化粪池预处理达标后排入市政污水管网,进入马铺污水处理厂处理。因此,在确保运营期机组正常运行、生产废水得到有效地处理和回用的前提下,本项目废水能够达标排放,对地表水环境产生的影响较小。建设单位应根据可行性研究报告及本评价提出的要求,切实落实各股废水的处理处置措施。

表 5.2.2-1 项目废水类别、污染物及污染治理设施信息表

				排	污	染治理设	:施	排	排放	
序号	废水类别	污染物种类	排放去向	↑ 放 规 律	污染 治理 说 编号	污染治 理设施 名称	污染 治理 设施 工艺	放口编号	口是 否 合 求	排放 口类 型
1	生活污水	pH、COD、 BOD ₅ 、SS、 NH ₃ -N	排入马铺污水处 理厂	间歇	TW0 01	生活污 水治理 设施	化粪池	DW 001	是	一般 排放 口
2	锅炉废水	pH、COD、 SS	锅炉废水回用于 调湿灰用水,锅 炉定期清洗废水 排入马铺污水处 理厂	间歇	TW0 02	沉淀池	絮凝沉淀	DW 002	是	一般 排放 口
3	化水系统 废水	pH、COD、 SS	回用于输送系统 冲洗,不外排	/	/	/	/	/	/	/
4	脱硫系统废水	pH、COD、 SS、硫化 物、氟化物、 总铅、总汞、 总砷、总镉、 石油类、挥 发酚、总磷	回用于调湿灰用 水,不外排	/	TW0 03	脱硫系 统废水 设施	中和+ 絮凝 沉淀	/	/	/
5	输送系统 冲洗废水	SS	回用于厂区降 尘、绿化及地面 冲洗,不外排	/	/	/	/	/	/	/
6	一体化净 水设备排 水	COD、SS	排入马铺污水处 理厂	间歇	TW0 02	沉淀池	絮凝 沉淀	DW 002	是	一般 排放 口
7	冷却系统 排水	COD、SS	排入马铺污水处 理厂	间歇	TW0 02	沉淀池	絮凝沉淀	DW 002	是	一般 排放 口
8	初期雨水	SS	排入马铺污水处 理厂	间歇	TW0 04	初期雨水池	沉淀	DW 002	是	一般 排放 口

5.2.2.2 废水排入马铺污水处理厂可行性

(1) 纳管可行性

根据《沙县水南马铺化工集中区污水处理厂项目环境影响报告书》,沙县水南马铺化工集中区污水处理厂位于福建省三明市沙县青州镇涌溪村马铺,青州化工产业集中区内,近期处理规模为 2000m³/d,设计接纳青州工业集中区 A、B 片区生活污水和工业废水。马铺污水处理厂位于本项目北侧约 450m 处,根据马铺工业集中区污水工程规划图(见图 5.2.2-1)可知,届时本项目废水可排入厂区西侧道路规划的市政污水管网,排入马铺污水处理厂处理。

(2) 水量冲击分析

根据《沙县水南马铺化工集中区污水处理厂项目环境影响报告书》,马铺污水处理厂设计处理规模为2000m³/d,园区目前收纳水量为990m³/d,尚有1010 m³/d 余量。本项目新增外排废水量为144.185t/d(生活污水4.995t/d+生产废水、初期雨水139.19t/d),占剩余处理量的14.28%,因此,马铺污水处理厂有能力承接项目废水,项目外排废水量不会对其造成水力冲击影响。

(3) 水质影响分析

本项目生活污水污染物为 pH、COD、BOD₅、SS、NH₃-N,经厂区化粪池预处理后各污染物排放浓度分别为 COD: 289mg/L、BOD₅: 178mg/L、SS: 106mg/L、NH₃-N: 31mg/L,出水浓度符合《污水综合排放标准》(GB8978-1996)三级标准,氨氮执行《污水排入城镇下水道水质标准》(CJ343-2010)B等级排放标准,同时满足马铺污水处理厂进水水质要求。项目生活污水经处理后水质不会对市政污水管网产生腐蚀影响,不会影响马铺污水处理厂正常运行和处理效果。

考虑到项目脱硫系统废水中含有重金属污染物,收集全部回用于调湿灰用水,不外排;项目外排的生产废水主要为锅炉定期冲洗废水、一体化净水设施定期排水、冷却系统调节池定期排水以及初期雨水,水质简单,污染物主要为 pH、COD 和 SS,经沉淀池收集处理后各项污染物排放浓度见表 5.2.2-2,同样符合马铺污水处理厂进水水质要求。

表 5.2.2-2 项目废水排放水质与马铺污水厂进水水质对比

项目	pН	COD	BOD ₅	SS	NH ₃ -N
本项目生活污水排放浓度(mg/L)	6~9	289	178	106	31
本项目生产废水排放浓度(mg/L)	6~9	24	-	24	-
马铺污水处理厂设计进水水质(mg/L)	6~9	≤500	≤300	≤400	€35
达标情况	达标	达标	达标	达标	达标

综上所述,本项目位于马铺污水处理厂服务范围内,废水排放不会对马铺污水 处理厂造成水力、水质冲击影响,项目废水排入马铺污水处理厂处理是可行的。

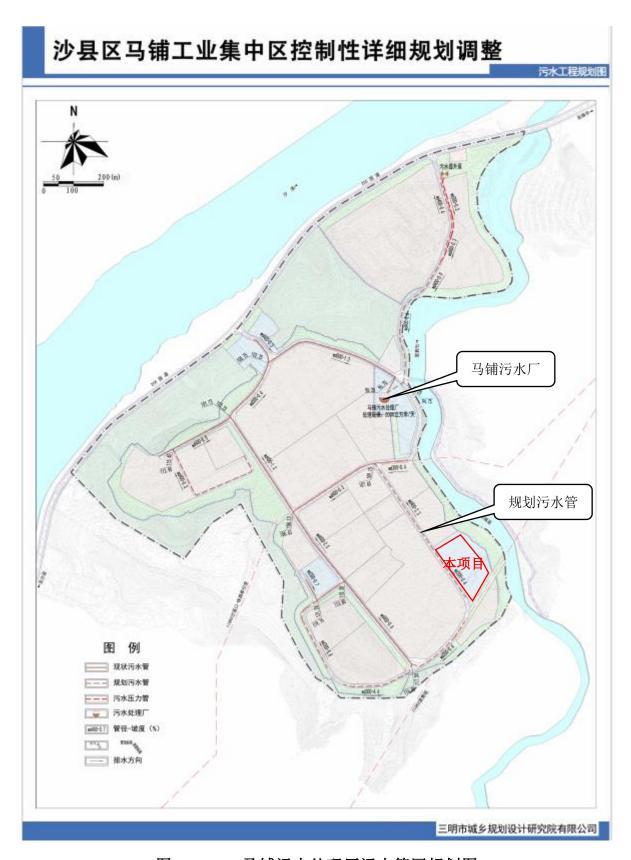


图 5.2.2-1 马铺污水处理厂污水管网规划图

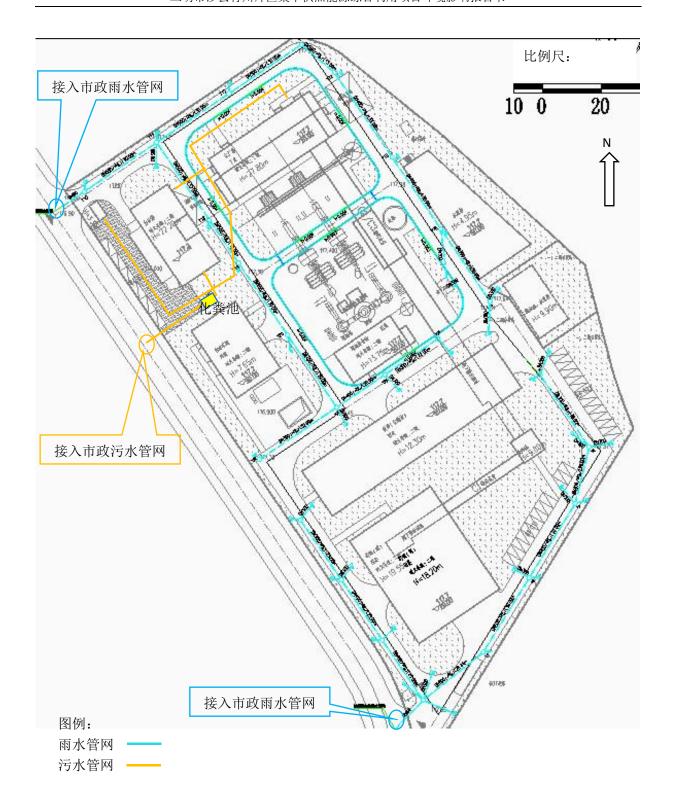


图 5.2.2-2 厂区雨污管网分布图

5.2.2.3 地表水环境影响评价自查表

表 5.2.2-3 建设项目地表水环境影响评价自查表

	工作内容		自查項						
	影响类型	水污染影响型回; 水文要素影	影响型□						
		饮用水水源保护区□;饮用7	k取水口□; 涉水的	的自然保护区;涉	水的风景名胜区	□;重要湿			
影	水环境保护目标	地□;重点保护与珍稀水生生	上物的栖息地□;重	重要水生生物的自	然产卵场及索饵	场、越冬场			
彩响		和洄游通道口口; 天然渔场等	穿渔业水体□;水产	产种质资源保护区	□; 其他☑				
识	影响途径	水污染影响型	DE TENE	水	文要素影响型				
	於啊逸任	直接排放口;间接排放	☑; 其他□	水温口;	径流□; 水域面	积口			
/33		持久性污染物□; 有毒有害剂	亏染物□; 非持久						
	影响因子	性污染物□; pH 值☑; 热污浆	ऐ□;富营养化□;	: 水温□;水位(水深)□;流速□;其他□					
		其他☑							
	评价等级	水污染影响型	<u> </u>	水	文要素影响型				
	и и чж	一级□;二级□;三级 A	□;三级 B☑	一级口];二级口;三级				
		调查项目			数据来源				
	区域污染源	己建□;在建□;拟建□;	拟替代的污染	排污许可证口;	环评□; 环保验	收□; 既有			
	E 3/13/200	其他口	源□	实测□;现场出	≦测□;入河排放	□数据□;			
		<u>Д</u>	<i>V</i> 3.—		其他□				
	受影响水体水环	调查时期			数据来源				
现	境质量	丰水期□; 平水期□; 枯水其	明□;冰封期□;	生态环境保护主管部门口;补充监测口;其					
状		春季□;夏季□;秋季	□; 冬季□		他口				
调	区域水资源开发	未开发□;开发利用 40%以 ⁻	下口;开发利用 409	%以上口					
查 -	利用状况	\Ш - - - - - - - - - -			₩ H → Æ				
	水文情势调查	调查时期			数据来源				
	小人间穷响互	丰水期□; 平水期□; 枯水期 春季□; 夏季□; 秋季□; 冬		水行政主管部门]□;补充监测□	; 其他□			
		监测时期	·子口	 监测因子	监测断面	龙占 台			
	补充监测	= 本 期□: 平 水 期□: 枯 水 射	加口,冰料期口,	皿砌四1	监测断面或点值				
	II Jumiki	春季□;夏季□;秋季	, , , , , , , , , , , , , , , , , , , ,	(无)	一	<u>L 30 (/)</u>			
	评价范围	河流: 长度 (/) km; 湖库、		<u>l</u> 面积(/)km²	'				
	评价因子	(/)							
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	评价标准	近岸海域:第一类口;第二							
现		规划年评价标准(/)							
状	\	丰水期□;平水期□;枯水期							
评	评价时期	春季□;夏季□;秋季□;冬	<李□						
价		水环境功能区或水功能区、这	丘岸海域环境功能[区水质达标状况:	达标□; 不达				
		标□				达标区☑			
	评价结论	水环境控制单元或断面水质	达标状况: 达标□;	不达标□		不达标区			
水环境保护目标质量状况: 达标□; 不达标□									
1 1		对照断面、控制断面等代表性断面的水质状况: 达标□; 不达标□							

			l	型建设项目同时应包括	· · · · •			
	水环境影响	句评价	水环境功能区或 满足水环境保护 水环境控制单元 满足重点水污染 减量替代要求口	ト满足水环境管理要求 成水功能区、近岸海域 中目标水域水环境质量 正或断面水质达标□ 是物排放总量控制指标 〕 或水环境质量改善目标	战环境功能区水质↓ 盘要求□ 示要求,重点行业强		染物排放满足等	等量或
	水污染控制 环境影响源 施有效性	咸缓措	区(流)域环均	竟质量改善目标□;替	↑代削减源□			
	预测方	法	数值解□;解析 导则推荐模式□					
预测	预测情	景	正常工况□; 非 污染控制和减约 区(流)域环均	正常工况□ 爰措施方案□ 竞质量改善目标要求情				
影响	预测时	期	春季口;夏季口 设计水文条件口	〈期□;枯水期□;冰〕;秋季□;冬季□〕ごごごごおみりおみりおみりおみりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおりおり<l< td=""><td></td><td></td><td></td><td></td></l<>				
	预测范 预测因		河流: 长度(/ (/)	/) km; 湖库、河口	及近岸海 域 : 面材	只(/)km²		
			求与现状满足和依托污水处理论	程度、建设项目占用水 设施稳定达标排放评价	《域空间的水流状》 ↑☑	兄与河湖演变状况	_,,,,_,	
			水环境质量回顾	川用程度及水文情势评 页评价□ <资源(包括水能资源		本状况、生态流量	量管理要 	

	环保措施	污水处理设施回; 水温		┗□;区域削减□;依托其他工程措施
	小水1日旭	□; 其他□		
<i>17-</i> }-			环境质量	污染源
防治		监测方式	手动□;自动□;无监测□	手动☑;自动□;无监测□
措	监测计划	监测点位	(/)	(厂区废水总排口)
施	皿视灯			(pH、COD、BOD5、SS、NH3-N、
) JE		监测因子	(/)	氟化物、硫化物、总铅、总汞、总
				砷、总镉、石油类、挥发酚、总磷)
	污染物排放清单			
	评价结论	可以接受☑; 不可以接	受口	
注:	"□"为勾选项,同	可打"☑"; "()"为	内容填写项,"备注"为其他补	卜充内容。

5.2.3 声环境影响预测与评价

5.2.3.1 噪声源强分析

(1) 声环境敏感目标调查

根据项目周边现状调查,项目厂界外最近敏感目标为管前村(>1km),基本不会 对其造成影响。

(2) 项目噪声源调查

本项目噪声主要来自转动机械、风烟道气体流动噪声及锅炉对空排汽噪声、冲管噪声及各种机械设备的运行噪声等。根据向业主单位调查了解,企业在设计阶段考虑了对各类声源设备的隔声降噪,拟针对不同特征的声源设备采取配套的噪声治理措施。引风机、一次风机、二次风机选用低噪声设备;其它各类风机、泵体(工业水泵、循环泵等)也采取相应的减震措施,同时对厂房进行隔声。各主要高噪设备的噪声相关参数见表5.2.3-1~5.2.3-2,噪声设备点位示意图见图 5.2.3-1。

表 5.2.3-1 室外噪声源强调查清单

	空间相对位置 声源源强 声源均划进施 云行时段													
序号	声源名称	数量:	2	它间相对位置	Ī.	声源源强	声源控制措施	运行时段						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	产源石物	数里	X	Y	Z	声功率级/dB(A)	<i>)二 (水</i>)工中11月 //E	色们的权						
1	锅炉排气	1	78.7	-18.0	55	95	排汽放空消声器	2:00-24:00						
2	锅炉	2	45.9	-1.6	5	90	进风口消声器、管道外壳阻尼	2:00-24:00						
3	一次风机及配套电机	2	48.6	-5.2	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
4	引风机及配套电机	2	73.3	-14.8	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
5	二次风机及配套电机	2	60.1	-17.5	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
6	螺旋给料机	4	68.3	20.8	1	85	隔声罩壳、厂房隔声	2:00-24:00						
7	皮带给煤机	4	66.4	18.9	1	85	隔声罩壳、厂房隔声	2:00-24:00						
8	炉前点火设备	2	70.1	16.6	1	85	隔声罩壳、厂房隔声	2:00-24:00						
9	吹灰器	2	42.3	-4.5	3	85	隔声罩壳、厂房隔声	2:00-24:00						
10	旋风布袋除尘器	2	79.7	-1.8	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
11	石灰石-石膏湿法烟气脱硫系统	2	79.7	-12.3	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
12	石膏脱水系统	2	66.3	-12.3	3	75	隔声罩壳、厂房隔声	2:00-24:00						
13	石灰石粉仓顶除尘器	1	64.1	-32.4	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
14	脱硫剂制备系统	1	67.7	-37.4	3	75	隔声罩壳、厂房隔声	2:00-24:00						
15	低氮燃烧器+SNCR+高温 SCR 系统	2	91.5	-18.7	3	90	进风口消声器、管道外壳阻尼	2:00-24:00						
16	机械通风冷却塔	1	91.9	-18.8	1	75	厂房隔声	2:00-24:00						
17	冷却水泵	2	94.4	8.1	1	85	隔声罩壳、厂房隔声	2:00-24:00						
		注: 以1		北角为坐标	原点, 东西	i向为 X 轴、南北向为	Y轴。							

注: 以坝目,区四北用万坐怀原点,东四问万 X 钿、 南北问为 Y 钿。

表 5.2.3-2 室内噪声源强调查清单

						空间	相对位	置	距室	内边	界距隔	Ŋ/m	室内边	2界声	级/dB	(A)		建筑		建:	英物外	 噪声	
			数	声功	声源控制措												运行	物插	声	压级/d	IB (A))	
序号	位置	声源名称	量	率/dB (A)	施施	X	Y	Z	北侧	南侧	西侧	东侧	北侧	南侧	西侧	东侧	时段	入损 失/dB (A)	北侧	南侧	西侧	东侧	建筑物 外距离
1		除氧器	2	85		35.6	-45.3	1	5	10	10	10	63.6	61.9	61.9	61.9	2:00-24 :00	25	38.6	36.9	36.9	36.9	1m
2		电动给水泵	3	85		34.3	-45.3	1	5	10	9	11	63.6	61.9	62.0	61.7	2:00-24	25	38.6	36.9	37.0	36.7	1m
3	化水	连续排污 扩容器	2	85	隔声罩壳、厂	30. 0	-40. 7	1	5	10	7	13	63.6	61. 9	62. 6	61. 6	2:00- 24:00	25	38.6	36.9	37.6	36.6	1m
4	车间	定期排污 扩容器	2	85	房隔声	30. 0	-40. 7	1	5	10	7	13	63.6	61. 9	62. 6	61. 6	2:00- 24:00	25	38.6	36.9	37.6	36.6	1m
5		疏水扩容 器	2	85		30. 0	-40. 7	1	4	6	7	13	64.6	63. 0	62. 6	61. 6	2:00- 24:00	25	39.6	38.0	37.6	36.6	1m
6		疏水泵	4	85		31. 1	-44. 3	1	4	6	6	14	64.6	63. 0	63. 0	61. 5	2:00- 24:00	25	39.6	38.0	38.0	36.5	1m
7		除盐水系 统	1	85	厂房隔声	26. 5	-38. 9	1	6	4	10	10	63.0	64. 6	61. 9	61. 9	2:00- 24:00	25	38.0	39.6	36.9	36.9	1m
8	炉前煤仓、	输煤系统 (给料 机、皮带 机、破碎 机)	1	85	隔声罩壳、厂房隔声	102	10.4	2	4	4	5	5	64.6	64. 6	63. 6	63. 6	2:00- 24:00	25	39.6	39.6	38.6	38.6	1m
9	破碎楼	除尘装置	2	90	进风口消 声器、管道 外壳阻尼	101 .4	11.2	5	4	4	4	6	77.2	69. 6	69. 6	68. 0	2:00- 24:00	25	52.2	44.6	44.6	43.0	1m

10	炉前生物	输送生物 质燃料系 统(给料 机、皮带 机)	1	85	隔声罩壳、 厂房隔声	58. 9	27.7	2	4	4	5	5	64.6	64. 6	63. 6	63. 6	2:00- 24:00	25	39.6	39.6	38.6	38.6	1m
11	质仓	除尘装置	2	90	进风口消 声器、管道 外壳阻尼	56. 2	26.3	5	4	4	4	6	77.2	69. 6	69. 6	68. 0	2:00- 24:00	25	52.2	44.6	44.6	43.0	1m
12		冷渣器	4	75		32. 4	-6.0	1	3	5	5	5	53.6	53. 6	53. 6	53. 6	2:00- 24:00	25	31.1	28.6	28.6	28.6	1m
13		1号皮带 输渣机	2	80	隔声罩壳、	35. 6	-5.1	1	4	4	3	7	59.6	61. 1	57. 6	59. 6	2:00- 24:00	25	34.6	34.6	36.1	32.6	1m
14	除 灰	2号皮带 输渣机	2	80	厂房隔声	35. 6	-5.1	1	4	4	4	6	59.6	59. 6	58. 0	59. 6	2:00- 24:00	25	34.6	34.6	34.6	33.0	1m
15	渣 系	斗式提升 机	2	75		37. 9	-6.9	1	5	3	5	5	56.1	53. 6	53. 6	56. 1	2:00- 24:00	25	28.6	31.1	28.6	28.6	1m
16	统	布袋除尘 器	2	90	进风口消 声器、管道 外壳阻尼	33. 4	-6.9	5	5	3	4	6	71.1	69. 6	68. 0	71. 1	2:00- 24:00	25	43.6	46.1	44.6	43.0	1m
17		浓相气力 输送仓泵	6	85		32. 9	-8.7	1	5	3	4	6	66.1	64. 6	63. 0	66. 1	2:00- 24:00	25	38.6	41.1	39.6	38.0	1m
18	空压机房	空压机	2	85	隔声罩壳、 厂房隔声	92. 3	29.1	1	10	2	4	3	61.9	68. 8	64. 6	66. 1	2:00- 24:00	25	36.9	43.8	39.6	41.1	1m
					注:	以项目	1 厂区	5北	角为约	坐标原	泵点,	东西	向为X	〔轴、〕	南北向	为 Y	轴。						

5.2.3.2 噪声预测模式

根据项目建设内容及《环境影响评价技术导则 声环境》(HJ2.4-2021)的要求,项目噪声预测采用的模型为导则附录 A 户外声传播的衰减和附录 B 中"B.1 工业噪声预测计算模型"。

(1) 室外声源

应根据声源声功率级或参考位置处的声压级、户外声传播衰减,计算预测点的声级,可以按下式公式计算:

$$L_p(r) = L_p(r_0) + D_C - (A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc})$$

式中: L_p(r) ——预测点处声压级, dB;

 $L_p(r_0)$ ——参考位置 r_0 处的声压级,dB;

 D_{C} ——指向性校正,它描述点声源的等效连续声压级与产生声功率级 L_{w} 的全向点声源在规定方向的声级的偏差程度,dB;

A_{div}——几何发散引起的衰减,dB;

A_{atm} ——大气吸收引起的衰减, dB;

Agr ——地面效应引起的衰减, dB;

Abar ——障碍物屏蔽引起的衰减, dB;

Amisc ——其他多方面效应引起的衰减, dB。

若只考虑几何发散衰减时,可按下式计算:

$$L_A(r) = L_A(r_0) - A_{div}$$

式中: $L_A(r)$ ——距声源 r 处的 A 声级,dB(A);

 $L_A(r_0)$ ——参考位置 r_0 处的声级,dB(A);

A_{div}——几何发散引起的衰减,dB。

(2) 室内声源

对室内噪声源采用室内声源模式并换算成等效的室外声源。声源位于室内,室内声源可采用等效室外声源声功率级法进行计算。设靠近开口处(或窗户)室内、室外某倍频带的声压级或 A 声级分别为 L_{p1} 和 L_{p2} 。若声源所在室内声场为近似扩散声场,则室外的倍频带声压级可按下式求出:

$$L_{p2}=L_{p1}-(TL+6)$$

式中: Lp1——靠近开口处(或窗户)室内某倍频带的声压级或 A 声级, dB;

L_{n2}——靠近开口处(或窗户)室外某倍频带的声压级或 A 声级, dB;

TL——隔墙(或窗户)倍频带或 A 声级的隔声量, dB。

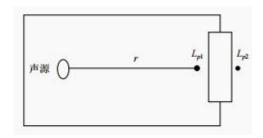


图 5.2.3-1 室内声源等效室外声源图例

设第 i 个室外声源在预测点产生的 A 声级为 L_{Ai} ,在 T 时间内该声源工作时间为 t_i ; 第 j 个等效室外声源在预测点产生的 A 声级为 L_{Aj} ,在 T 时间内该声源工作时间为 t_j ,则工程声源对预测点产生的贡献值(L_{eqg})为:

$$L_{eqg} = 10 \lg \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1 L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right) \right]$$

式中: Leqg——建设项目声源在预测点产生的噪声贡献值, dB;

T ——用于计算等效声级的时间, s;

N ——室外声源个数;

 t_i ——在 T 时间内 i 声源工作时间, s;

M ——等效室外声源个数;

 t_i ——在 T 时间内 i 声源工作时间, s。

预测点的贡献值和背景值按能量叠加方法计算得到的声级。噪声预测值(L_{eq})计算公式为:

$$L_{eq} = 10 \lg (10^{0.1 L_{eqg}} + 10^{0.1 L_{eqb}})$$

式中: Leq ——预测点的噪声预测值, dB;

Leag——建设项目声源在预测点产生的噪声贡献值,dB;

Leab——预测点的背景噪声值,dB。

5.2.3.3 预测结果及评价

根据《环境影响评价技术导则 声环境》(HJ2.4-2021)中 8.5.2,进行厂界噪声评价时,以噪声贡献值作为评价量,项目昼间、夜间均有作业,厂界噪声影响预测结果见表 5.2.3-3。

		点位坐板	Ŝ.	昼间	 嬠声	夜间	———— 噪声	
预测点	X	Y	Z	标准限值 /dB(A)	贡献值 /dB(A)	标准限值 /dB(A)	贡献值 /dB(A)	达标情况
厂界北侧	18.8	36.7	1.2	≤65	48.4	€55	48.5	达标
厂界东侧	119.6	27.9	1.2	≤65	54.3	≤55	54.4	达标
厂界南侧	120.3	-89.6	1.2	≤65	50.5	€55	50.9	达标
厂界西侧	29.0	-76.5	1.2	≤65	52.3	≤55	52.3	达标

表 5.2.3-3 项目厂界噪声影响预测结果一览表

由上表 5.2.3-3 预测结果可知,项目建成后运营期间厂界昼间、夜间噪声值均可符合《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,厂界噪声达标。

5.2.3.4 声环境影响评价自查表

表 5.4.4-1 项目声环境影响评价自查表

I.	作内容				 E项目		
评价等级与范	评价等级		一级口		及口	三级☑	
围	评价范围	200m	\checkmark	大于 20	00m□	小于 200	m□
评价因子	评价因子	等效连续 A	声级☑	最大A声	级口 计权学	等效连续感觉	觉噪声级□
评价标准	评价标准	国家村	示准☑	地方	标准□	国外标	(性口)
	环境功能区	0 类区□ □	类区口	2 类区口	3 类区☑	4a 类区□	4b 类区□
现状评价	评价年度	初期口	近	近期☑	中期口	ì	远期口
少64人厂10	现状调查方法	现场实	测法团	现场实测加	模型计算法	上□ 收集第	资料□
	现状评价	达标百分比			100%		
噪声源调查	噪声源调查方法	现场	实测☑	已有	资料☑	研究成果	<u> </u>
	预测模型		导则推荐	模型☑		其他□	
	预测范围	200m		大于 20	00m□	小于 200	m□
声环境影响	预测因子	等效连续 A	声级☑	最大A声	级口 计权学	等效连续感觉	觉噪声级□
预测与评价	厂界噪声贡献值		达	标☑	不达	标□	
	声环境保护目标 处噪声值		达	标☑	不达	标□	
环境监测计	排放监测	厂界监测☑	固定位置	监测口 自动	边监测口 手	动监测口 无	监测□
小児 型	声环境保护目标 处噪声监测	监测因子: 效 A 声:	(连续等 级)	监测点位	数(四至)	无监	∭□
评价结论	环境影响		可	行☑	不可行	丁□	
注:"□"为勾	选项,填"√";"()"为内容填	写项				

5.2.4 固体废物影响评价

5.2.4.1 一般工业固体废物环境影响分析

本项目一般工业固废包括炉渣、飞灰、脱硫副产物石膏、废离子交换树脂、沉淀池 污泥和废滤袋,均为固体,分类收集,厂区内规划有渣仓、灰库、石膏贮存间和污泥暂 存区场所用于临时存放一般固废,其中废离子交换树脂和废滤袋更换下后立即由厂商回 收,不在厂内暂存。

各类一般固废暂存设施设计容积及暂存量情况见表 5.2.4-1,可知设计贮存规模可满足项目一般固废贮存需求。

					暂存证	殳施		暂存周	
序 号 	一般工业固 废名称	形态	年产量	名称	设计容积	最大暂 存量	暂存 天数	期内存放量	贮存方式
1	炉渣	固体	7686t	渣仓	100m ³	120t	5 天	117t	密封圆筒仓
2	飞灰	固体	5124t	灰库	200m ³	70t	4 天	68t	密封圆筒仓
3	脱硫石膏	固体	127.55t	石膏贮 存间	50m ³	5t	13 天	5t	袋装存放
4	沉淀池污泥	固体	2.177t	污泥暂 存区	10m ³	1t	60 天	0.5t	袋装存放

表 5.2.4-1 一般工业固废暂存量及分区占地面积

根据《小型火力发电厂设计规范》(GB 50049-2011)相关要求,厂内渣仓应尽量靠近锅炉底渣排放点布置,渣仓的容积应按锅炉排渣量、外部运输条件等因素确定,有效容积宜满足除渣系统 24h~48h 的排渣量设计。灰渣、脱硫石膏和污泥收集后由专用封闭罐车定期外运,外售给物资单位综合利用,项目运营期将与回收单位签订了综合利用协议,并由回收单位负责运输,项目灰渣、脱硫石膏综合利用可行。沉淀池收集的为含煤废水,沉淀物(污水处理污泥)主要为煤渣、木屑,通过脱水机脱水晾干后可按照适当比例掺入原煤系统中进行掺烧处理,实现物料再利用,措施可行。

综上,项目一般工业固废采取有效暂存、委托利用措施后,妥善解决了一般工业固 废的污染问题,对周边环境影响小。

5.2.4.2 危险废物环境影响分析

本项目危险废物包括废催化剂、脱硫废水污泥、废机油、空油桶和含油废抹布。为防止危废储存过程的二次污染,其贮存和转运过程,应严格按《危险废物贮存污染控制标准》(18597-2023)和《危险废物转移管理办法》要求执行,厂区内设置危险废物贮存

间,并且在明显位置悬挂危险废物标识。

项目危险废物经分类打包收集后,暂存于危废贮存间内,并委托有危废处置资质的单位收集处置。根据《建设项目危险废物环境影响评价指南》,危险废物的环境影响应从产生、收集、贮存、运输等全过程考虑,分析项目产生的危险废物可能造成的环境影响。

(1) 危险废物收集过程环境影响

本项目危险废物的收集包括两个方面:一是在危险废物产生节点将危险废物集中到适当的包装容器内或车辆上的活动;二是将已包装或装到运输车辆上的危险废物集中到危险废物贮存间的内部转运。项目危险废物的收集需严格按照《危险废物收集贮存运输技术规范》(HJ2025-2012)的相关技术要求:

- ①根据危险废物产生的工艺特征、排放周期、危废特性、管理计划等因素制定详细的收集计划。收集计划包括收集任务概述、收集目标及原则、危险危废特性评估、危险废物收集量估算、收集作业范围和方法、收集设备与包装容量、安全生产与个人防护、工程防护与事故应急、进度安排与组织管理等。
- ②制定危险废物收集操作规程,内容包括适用范围、操作程序和方法、专用设备和工具、转移和交接、安全保障和应急防护等。
- ③危险废物收集和转运作业人员根据工作需要配备必要的个人防护装备,如手套、防护镜、防护服、防毒面具或口罩等。
- ④在危险废物收集和转运过程中,采取相应的安全防护和污染防治措施,包括防爆、防火、防泄漏、防飞扬、防雨或其他防止污染环境的措施。
- ⑤危险废物收集时应根据危险废物的种类、数量、危险特性、物理形态、运输要求等因素选择合适的包装形式。

(2) 危险废物贮存过程环境影响

厂区内东北侧规划 1 个危废贮存间,面积约 100m², 危废贮存间单独设置,并设置有防雨、防火、防雷、防尘、防腐和防渗措施,不同危险废物进行分区存放。项目各种危废贮存量及分区贮存占地面积情况见表 5.2.4-2。

序 号	危险废物名称	形态	年产量/t	暂存 周期	暂存周期 内存放量/t	规划占地 面积/m²	包装贮存方式
1	废催化剂	固体	3	6 个月	1.5	10	密封袋封装
2	脱硫废水污泥	液体	27.61	6 个月	13.805	50	桶装,桶口密封
3	废机油	液体	0.5	1年	0.5	5	桶装,桶口密封
4	空油桶	液体	0.08	1年	0.08	5	桶口密封
5	含油废抹布	固体	0.02	1年	0.02	5	密封袋封装
		占地面	面积合计			75	-

表 5.2.4-2 危险废物暂存量及分区占地面积

根据上表危险废物贮存空间分析,本项目危险废物贮存间建筑面积空间能够满足相关危险废物的存放需求,且危险废物贮存间均按要求设置防渗措施,因此,项目危险废物在暂存过程中不会对环境空气、地表水、地下水和土壤环境造成不利影响。

(3) 危险废物运输过程环境影响

- ①危险废物的运输应由持有危险废物经营许可证的单位按照其许可证经营范围组织实施,承担危险废物运输的单位应获得交通运输部门颁发的危险货物运输资质。
- ②运输单位承运危险废物时,应在危险废物包装物上按照 GB18597 附录 A 设置标志。
- ③本项目各类危险废物从生产区由职工及时收集并使用专用容器贮存于危险废物 贮存间内,生产区到贮存间的转移均在厂内,在严格执行操作规程的情况下,不会发生 散落或泄漏至外环境的情况,运送沿线没有敏感目标,对周边环境影响不大。
- ④本项目危险废物厂外运输由有资质的单位负责,危险废物由专用容器收集,专车运输。运输过程按照国家相关规定制定危险废物运输管理计划,并向所在地县级以上地方人民政府生态环境主管部门申报危险废物的种类、产生量、流向、贮存、处置等有关资料,运输过程不会对环境造成影响。

(4) 危险废物处置环境影响

根据本项目危险废物类别及有资质的危险废物处置单位的处置能力,本项目产生的危险废物均可委托有对应类别资质的单位安全处置,则对周边环境影响不大。

5.2.4.3 生活垃圾环境影响分析

项目生活垃圾主要是职工办公生活产生的废纸屑、厕所垃圾等,厂区内设有垃圾桶, 定点收集,生活垃圾由环卫部门每日清运,不会对周边环境造成二次污染,对环境影响较小。

5.2.4.4 小结

通过采取上述措施,本项目产生的固体废物全部得到综合利用或妥善处置,不直接排入外环境。因此,只要加强管理,做好固体废物的综合利用及处理处置工作,项目产生的固体废物不会对周围环境造成不利影响。

5.2.5 生态环境影响评价

建设项目位于马铺工业集中区,项目厂区及周边区域用地多为工业用地,区域已形成以工业化城市为主要特征的生态平衡。本项目利用现有用地,对土壤利用格局变化影响小,项目运营期间废气采用相应治理措施后均能够确保达标排放,生活污水经化粪池预处理达标后排入马铺污水处理厂,锅炉废水、脱硫系统废水收集回用于调湿灰用水不外排,化水系统废水收集回用于燃料输送系统冲洗用水不外排,输送系统冲洗废水收集后全部回用于厂区降尘、绿化灌溉及地面冲洗用水,剩余的锅炉冲洗废水、冷却系统排水以及一体化净水设施废水收集至沉淀池处理达标后排入市政污水管网,后排入马铺污水处理厂,不直接排入外环境,不会对区域生态环境造成污染。因此,项目运营期对区域生态环境影响较小。

5.2.6 碳排放评价

5.2.6.1 碳排放政策符合性分析

本项目与产业政策、相关规划符合性情况如下:

(1) 产业政策符合性分析

本项目属于区域集中供热工程,属于《产业结构调整指导目录(2024 年本)》修 正版中鼓励类二十二条"城市基础设施"中第 2 款"城镇集中供热建设和改造工程", 因此,项目建设符合国家及地方产业政策要求。

(2) 相关规划符合性分析

项目建设基本符合《福建省"十四五"生态环境保护规划》、《沙县区马铺工业集中区控制性详细规划调整》要求,具体的符合性分析详见"1.5 分析判定相关情况"小节。

为相应十九届五中全会关于加快推进绿色低碳发展的决策部署,推动绿色转型和高质量发展,建设单位应做好与后续碳达峰行动方案等相关政策的衔接。

5.2.6.2 碳排放分析

(1) 碳排放影响因素分析

基于碳源流识别情况,参考《二氧化碳排放核算和报告要求 热力生产和供应业》 (DB11/T1784-2020),本项目碳排放源识别结果详见表 5.2.6-1。

碳排放分类	具体的排放源	排放源/设施	相应物料或能源种类	温室气体种类
化石燃料燃烧	天然气、燃油、煤炭等化石 燃料在各种类型的固定和 移动燃烧设备中发生氧化 燃烧过程产生的二氧化碳 排放	锅炉	煤炭、生物质	CO ₂
消耗外购电力产 生的排放	消耗外购电力所对应的二 氧化碳排放	项目所有用电 设施	电	CO_2

表 5.2.6-1 排放单位碳排放源识别表

(2) 二氧化碳源强核算

二氧化碳排放总量等于核算边界内化石燃料燃烧、消耗外购电力和消耗外购热力产 生的排放量之和,按下式计算:

式中: E---报告主体的二氧化碳排放总量,单位为吨二氧化碳(tCO₂);

E ***--报告主体化石燃料燃烧产生的二氧化碳排放量,单位为吨二氧化碳(tCO2);

 E_{Man} ---报告主体消耗外购电力产生的二氧化碳排放量,单位为吨二氧化碳(tCO_2);

E փարկ---报告主体消耗外购热力产生的二氧化碳排放量,单位为吨二氧化碳(tCO₂)。

①E wk CO2排放量

化石燃料燃烧的活动数据是核算和报告年度内各种燃料的消耗量与平均低位发热量的乘积,按下式计算:

$AD_i = NCV_i \times FC_i$

式中: NCV_i---核算和报告年度内第 i 种燃料的平均低位发热量,对固体和液体燃料,单位为吉焦每吨(GJ/t);根据 DB11/T1784-2020 文件附录 A.1 取值;

FC_i---核算和报告年度内第 i 种化石燃料的消耗量,对固体和液体燃料,单位为吨(t)。

化石燃料燃烧的二氧化碳排放的排放因子按下式计算:

EFi=CCi× OFi×44/12

式中: CC_i ---第 i 种化石燃料的单位热值含碳量,单位为吨碳每吉焦(tC/GJ);根据 DB11/T1784-2020 文件附录 A.1 取值;

OF:---第 i 种化石燃料的碳氧化率,以%表示:

44/12---二氧化碳与碳的相对分子量之比。

因此,项目化石燃料燃烧过程产生的二氧化碳排放量计算如下:

表 5.2.6-2 化石燃料燃烧产生的二氧化碳情况

燃料品种	燃料年消耗量(t)	平均低位发热量 (GJ/t)	单位热值含碳量 (tC/GJ)	碳氧化率(%)	CO ₂ 排放量 (t/a)
煤炭	87360	20.304	27.49×10 ⁻³	85	15.1971万
柴油	128.65	43.33	20.20×10 ⁻³	98	404.62
	合计			15.2376 万	

备注:依据《企业温室气体排放核算与报告指南发电设施》,对于掺烧生物质、生活垃圾、生活污泥等固体废物的项目,仅核算其中化石燃料的温室气体排放量。因此,本次评价不考虑生物质燃料燃烧产生的 CO₂ 情况。

②E_{外购电}CO₂排放量

消耗外购电力产生的二氧化碳排放量按下式计算:

式中: AD _{外购电}---报告主体核算和报告年度内消耗外购电力电量,单位为兆瓦时 (MWh):

 $EF_{\mathfrak{q}}$ ---电网年平均供电排放因子,单位为吨二氧化碳每兆瓦时(tCO_2/MWh)。 根据 DB11/T1784-2020 文件附表 A.2,电力供应的 CO_2 排放因子取 0.604。

表 5.2.6-3 购入电力二氧化碳排放当量核算表

工序	消费量	CO₂排放因子	碳排放量
排放源	MW*h	tCO ₂ /MW*h	tCO ₂
购入电力	7587.1	0.604	4582.61

③E_{外购热}CO₂排放量

消耗外购热力包括外购蒸汽和热水,消耗外购热力产生的二氧化碳排放量按下式计算:

式中: AD_{MMM} ---报告主体核算和报告年度内消耗外购热力的热量,单位为吉焦(GJ); EF_{4} ---热力供应排放因子,单位为吨二氧化碳每吉焦(tCO_2/GJ)。

本项目不使用外购蒸汽和热水,不涉及外购热源产生的二氧化碳排放量。

综上,本项目碳排放量 E=15.2376 万+0.4583 万+0=15.6959 万(tCO₂)。

(3) 供热量

本项目为集中供热项目,为直接供热系统,热源供热量经供热管网直接输送至热用

户,进入热用户热量即建筑物供热量 $Q_{(b,d)}$ 。根据项目表 3.1.3 锅炉热经济性指标,项目设计供热量为 85.39 万 GJ。

(4) 碳排放强度指标

项目碳排放强度指标=E/Q=15.6959 万(tCO₂)×1000/85.39 万 GJ=183.81kgCO₂/GJ。

5.2.6.3 减污降碳措施及其可行性论证

- (1) 项目拟采取的节能降耗措施
- ①采取新技术、新工艺、新材料、新设备,加强燃料的综合利用和合理利用,以降 低燃料的消耗。
- ②供配电设计本着经济合理,技术先进,节省电能为原则,生产设备、仪器设备及供电设备均选用耗能低、效率高的节能换代产品,配电室内安装低压电容器补偿屏,降低无功功率损耗,提高功率因数,节约能源消耗。光源选用科学、高效、节能的声光控制方式,严格实施绿色照明。
- ③集中供热管网系统均采用合理的输送工艺,尽可能降低途中消耗。供热系统管道均采用保温设计,保温材料为聚氨酯保温层,最大程度的降低管道冷热损失。
- ④项目建成后,根据各建筑物的功能、用电负荷、用水及取暖的性质,供水、供电及供热系统在入口处均安装计量和节流装置。
 - (2) 污染治理措施比选

①废气治理方案

项目锅炉烟气采用"低氮燃烧+旋风+布袋除尘+石灰石-石膏湿法脱硫+SNCR/SCR 耦合式脱硝"治理技术。

除尘技术:应用在燃煤锅炉上的成熟烟气除尘技术主要有电除尘、电袋复合除尘、 袋式除尘。袋式除尘技术系统电能用量较小,从碳减排角度分析拟建项目采用布袋除尘 技术更优。

脱硝技术:常见应用在燃煤锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术 (SCR)、选择性非催化还原技术(SNCR)以及 SCR/SNCR 组合脱硝技术。SNCR/SCR 耦合式脱硝技术比单纯的 SCR 脱硝技术系统压力较小,意味着电能用量较小,从碳减排角度分析拟建项目采用 SNCR/SCR 耦合式脱硝技术更优。

脱硫技术:常见应用在燃煤锅炉上的成熟烟气脱硫技术主要有消石灰半干法脱硫、石灰石-石膏湿法脱硫技术。本项目采用石灰石-石膏湿法脱硫技术,脱硫废水循环回用,

能耗低符合碳减排的理念。

(2) 废水治理方案

本项目生活污水经厂区化粪池初步处理后排至园区污水管网,最终排至马铺污水处理厂处理。锅炉废水、脱硫系统废水、化水系统废水和输送系统冲洗废水收集后全部回用于生产,不外排,剩余锅炉冲洗废水、冷却系统排水和一体化净水设施废水收集至沉淀池处理后达标排入市政污水管网,项目废水处理工艺未采用蒸发等高耗能废水治理工艺和设备,符合碳减排的思路。

5.2.6.4 碳排放环境影响评价结论

本项目符合国家法律、法规、产业政策及相关规划要求,项目碳排放量为 5.8325 万吨/年,拟采取的碳减排技术可行、减污降碳措施合理,碳排放水平符合《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评〔2021〕45 号)要求。

6 环境风险评价

环境风险评价是一突发性事故导致的危险物质环境急性损害防控为目标,对建设项目的环境风险进行分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应急建议要求,为建设项目环境风险防控提供科学依据。本次环境风险评价依据《建设项目环境风险评价技术导则》(HJ169-2018)进行。

6.1 风险源调查

(1) 物质理化分析等基础资料

根据本项目原辅料使用及贮存情况,项目所涉及的危险物质其理化性质及危险特性分析见表 6.1-1。

表 6.1-1 项目所涉及危险物质的理化性质及危险特性一览表

一、原辅料				
危化品名称	理化性质	易燃易爆性	危险特性	急性毒性
氨水	氨水又称阿摩尼亚水,指氨的水溶液,主要成分为 NH ₃ ·H ₂ O, 无色透明且具有刺激性气味。氨水易挥发,具有部分碱的通性,由氨气通入水中制得。密度 0.91g/cm ³ ,蒸气压 5990mmHg(25%),pH 值 12, 正常状态下稳定	蒸气与空气能 形成爆炸性混 合物,遇明火、 高热能引起燃 烧爆炸	造成严重皮肤灼伤和眼损伤。对水生生物毒性极大。蒸气与空气能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。放出有毒气体。易分解放出氨气,温度越高分解速度越快,可形成爆炸性气氛	急性水生毒性 (类别 1); 经口: LD ₅₀ Rat oral 350 mg/kg
0#轻柴油	轻柴油是复杂烃类混合物,为柴油机燃料,沸点范围为 180 到 370 度之间,为易燃烧、易爆炸的危险品,其自燃点为 335℃。为浅黄色或棕褐色的液体,密度一般为 0.81~0.86 克/立方厘米,闪点:38℃,熔点:-6℃	易燃烧、易爆炸	燃烧时也更容易产生烟尘,造成空 气污染。柴油燃烧后产生的烟灰可 能有致癌的作用	柴油的雾滴吸入后可致 吸入性肺炎。皮肤接触柴 油可致接触性皮炎
机油	发动机润滑油,密度约为 0.91×10³(kg/m³),能对 发动机起到润滑减磨、辅助冷却降温、密封防漏、防 锈防蚀、减震缓冲等作用。闪点>300℃,自燃温度: 450℃,沸点: 225℃,比重(水=1): 0.82~0.85, 不溶于水与其他化学品。	易燃烧、易爆炸	与皮肤接触有危害性, 食入会导致 胃不适	无
二、危险废物				
原辅料名称	理化性质	易燃易爆性	危险特性	急性毒性
废催化剂	HW50: 772-007-50	不易燃不易爆	无数据资料	毒性
脱硫废水污泥	待鉴定	不易燃不易爆	无数据资料	毒性
废机油	HW08: 900-249-08	可燃液体	无数据资料	毒性
空油桶	HW49: 900-041-49	不易燃不易爆	无数据资料	毒性
含油废抹布	HW49: 900-041-49	可燃固体	无数据资料	毒性

(2) 危险物质数量和分布情况

对照《建设项目环境风险评价技术导则》(HJ169-2018)中附录 B 和《危险化学品重大危险源辨识》(GB18218-2018),对本项目工程生产、使用、储存过程涉及的原辅材料等进行识别,经过识别属于危险化学品及其存储情况详见表 6.1-1。

类		主要组分/危				贮存方	式	
发 别	名称	王安纽万/厄 废类别	物态	容器	单位	最大贮	危险物质识别	贮存
700		及天加		类型	平 世	存量	结果	位置
	 	NH ₃ ·H ₂ O	 液体	储罐	30m³/罐	20t	HJ169-2018 表	氨水
生	安八八	N113*112O	们又什	旧唯	JUIII / 叫隹	201	B.1 第 58 项	罐
产							HJ169-2018 表	撬装
原	轻柴油	/	液体	油罐	5m³/罐	4t	B.1 第 381 项	式油
辅							B.1 另 381 坝	罐
料	机油	,	液体	油桶	250kg/桶	0.5t	HJ169-2018 表	空压
	<i>ላን</i>	/	/汉冲	* 1四1用	230Kg/1用	0.51	B.1 第 381 项	机房
	 废催化剂	HW50:	固体	袋装	501-~/代	1.5t		
	放催化剂 	772-007-50	四个 	衣衣	50kg/袋	1.31		
危	脱硫废水污泥	待鉴定	固体	袋装	50kg/袋	13.805t		
厄 险	废机油	HW08:	液体			0.5t	HJ169-2018 表	危废
慶	/友//L/田 	900-249-08	1274	2中 1 型	2501-~/4番	0.31	B.2 急性毒性类	贮存
仮 物	空油桶	HW49:	固体	油桶	250kg/桶	0.08t	别 2	间
170	至福福 900-041-49 回将			0.081				
	 	HW49:	田休	代壮	201-~/伏	0.024		
	含油废抹布	900-041-49	固体	袋装	20kg/袋	0.02t		

表 6.1-1 本项目危险化学品种类一览表

(3) 生产工艺特点

生产系统危险性识别包括主要生产装置、储运设施、公用工程和辅助生产设施、环境保护设施以及生产安全风险等。

项目工程使用到氨水、柴油和机油,如操作不当,可能发生泄漏,遇热或明火可能引起燃烧爆炸事件,同时有毒有害物质容易造成人员中毒等。

危险物质主要储存于氨水罐、撬装式油罐,危险废物暂存于危废贮存间,若管理不当,造成危化品违规泄漏,遇明火可能引发燃烧爆炸事故。

6.2 环境风险潜势判断

6.2.1 环境风险潜势划分依据

建设项目环境风险潜势划分为 I、II、III、IV/VI+级。根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,

对建设项目潜在危害程度进行分析,本项目环境风险潜势划分见表 6.2-1。

危险物质及工艺系统危险性(P) 环境敏感程度(E) 高度危害(P2) 中度危害(P3) 极高危害(P1) 轻度危害(P4) 环境高敏感区(E1) IV^+ IV \coprod III环境高敏感区(E2) IV IIIШ II 环境高敏感区(E3) Ш Ш П 注: IV 为极高环境风险

表 6.2-1 建设项目环境风险潜势划分

6.2.2 危险物质及工艺系统危险性(P)分级

6.2.2.1 危险物质数量与临界量比值(Q)

计算所涉及的每种危险物质在厂界内的最大存在总量与其临界值的比值 Q。当存在 多种危险物质时,则按下式计算物质总量与其临界量比值 Q:

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + ... \frac{q_n}{Q_n}$$

式中: q1, q2, ..., qn——每种危险物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n ——每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为 I; 当 Q \geq 1 时,Q 值划分为: $1\leq$ Q<10; 10 \leq Q<100;Q \geq 100。

本项目所涉及的危险物质数量与临界量比值 Q 计算结果见表 6.2-2。

序号	类别	危险物质名称	CAS 号	最大存在总 量 qn/t	临界量	Q 值
7				里 qn/t	Qn/t	
1		氨水	1336-21-6	20	10	2
2	生产原辅料	轻柴油	/	4	2500	0.0016
3		机油	/	0.5	2500	0.0002
4		废催化剂	HW50: 772-007-50	1.5	50	0.03
5		脱硫废水污泥	待鉴定	13.805	50	0.2761
6	危险废物	废机油	HW08: 900-249-08	0.5	50	0.01
7		空油桶	HW49: 900-041-49	0.08	50	0.0016
8		含油废抹布	HW49: 900-041-49	0.02	50	0.0004
Q值合计						2.3199

表 6.2-2 项目危险物质的存在量及其临界值量一览表

根据上表计算结果,项目危险物质数量与临界量比值为 2.3199, 属于 1<O<10。

6.2.2.2 行业及生产工艺 M 的分级确定

分析本项目所属行业及生产工艺特点,评估生产工艺情况,将 M 划分为①M> 20; ②10<M≤20; ③5<M≤10; ④M=5,分别以 M1、M2、M3、M4表示。

建设项目行业及生产工艺 M 值划分依据见表 6.2-3,本项目 M 值取值为 10,为 M3。

行业	评估依据	分值	得分	本项目涉及设备
石化、化工、 医药、轻工、 化纤、有色 冶炼等	涉及光气及光气化工艺、电解工艺(氯碱)、 氯化工艺、硝化工艺、合成氮工艺、裂解(裂化)工艺、氟化工艺、加氢工艺、熏氮化工艺、 氧化工艺、过氧化工艺、胶基化工艺、磺化工艺、聚合工艺、烷基化工艺、新型煤化工艺、 电石生产工艺、偶氮化工艺	10/套	0	/
石冰寺	无机酸制酸工艺、焦化工艺	5/套	0	/
	其他高温或高压,且涉及危险物质的工艺流程 a、危险物质贮存罐区	5/套(罐区)	5	氨水储罐
管道、港口/ 码头等	涉及危险物质管道运输项目、港口/码头等	10	0	/
石油天然气	石油、天然气、页岩气开采(含净化), 气库 (不含加气站的气库),油库(不含加气站的 油库)、油气管线 b(不含城镇燃气管线)	10	0	/
其他	涉及危险物质使用、贮存的项目	5	5	储油罐,危废贮 存间

表 6.2-3 行业及生产工艺 M 值划分表

备注: a 高温指工艺温度≥300℃, 高压指压力容器的设计压力 (P) ≥10.0MPa;

b长输管道运输项目应按站场、管道分段进行评价。

6.2.2.3 危险物质及工艺系统危险性(P)分级

定量分析危险物质数量与临界量的比值(Q)和所属行业及生产工艺特点(M),按表 6.2-4 对危险物质及工艺系统危险性(P)等级进行判断。

危险物质数量与临		行业及生产工艺(M)				
界量比值(Q)	M1	M2	M3	M4		
Q≥100	P1	P1	P2	Р3		
10≤Q<100	P1	P2	Р3	P4		
1≤Q<10	P2	Р3	P4	P4		

表 6.2-4 危险物质及工艺系统危险性等级判断(P)

本项目危险物质数量与临界量比值为 1≤Q<10, 行业及生产工艺为 M3, 因此本项目危险物质及工艺系统危险性等级参照按 P4 评价。

6.2.3 环境敏感程度(E)的划分

6.2.3.1 大气环境敏感程度

依据环境敏感目标环境敏感性及人口密度划分环境风险受体的敏感性,共分三种类型,E1为环境高敏感区,E2为环境中度敏感区,E3为环境低度敏感区。

表6.2-5 大气环境敏感程度分级

分级	大气环境敏感性
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 5 万
E1	人,或其他需要特殊保护区域;或周边 500m 范围内人口总数大于 1000 人;油气、化学品
	输送管线管段周边 200m 范围内,每千米管段人口数大于 200 人
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 1 万
E2	人,小于 5 万人;或周边 500m 范围内人口总数大于 500 人,小于 1000 人;油气、化学品
	输送管线管段周边 200m 范围内,每千米管段人口数大于 100 人,小于 200 人
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数小于 1 万
E3	人;或周边 500m 范围内人口总数小于 500 人;油气、化学品输送管线管段周边 200m 范
	围内,每千米管段人口数小于 100 人

根据项目表 2.5.2-1: 环境保护目标一览表的周边环境敏感目标分布情况,周边 5km 范围内人口数小于 1 万人,且周边 500m 范围内主要为工厂,不存在居民区、医疗卫生、文化教育等敏感保护目标,工厂职工人口总数约 350 人 < 500 人,因此本项目大气环境敏感程度分级为 E3。

6.2.3.2 地表水环境敏感程度

依据事故情况下危险物质泄漏到水体的排放点受纳地表水体功能敏感性,与下游环境敏感目标情况,共分为三级类型,E1为环境高敏感区,E2为环境中度敏感区,E3为环境低敏感区,分级原则见表 6.2-6。地表水功能敏感性分区和环境敏感目标分级分别见表 6.2-7 和表 6.2-8。

表6.2-6 地表水环境敏感程度分级

环境敏感目标	地表水功能敏感性				
小児	F1	F2	F3		
S1	E1	E1	E2		
S2	E1	E2	E3		
S3	E1	E2	E3		

表6.2-7 地表水功能敏感性分区

敏感性	地表水环境敏感特征
敏感F1	排放点进入地表水水域环境功能为II类及以上,或海水水质分类第一类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内涉跨国界的
敏感F2	排放点进入地表水水域环境功能为III类,或海水水质分类第二类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内涉跨省界的
敏感 F3	上述地区之外的其他地区

表6.2-8 环境敏感目标分级

敏感性	环境敏感目标
S1	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10 km范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体:集中式地表水饮用水水源保护区(包括一级保护区、二级保护区及准保护区);农村及分散式饮用水水源保护区;自然保护区;重要湿地;珍稀濒危野生动植物天然集中分布区;重要水生生物的自然产卵场及索饵场、越冬场和洄游通道;世界文化和自然遗产地;红树林、珊瑚礁等滨海湿地生态系统;珍稀、濒危海洋生物的天然集中分布区;海洋特别保护区;海上自然保护区;盐场保护区;海水浴场;海洋自然历史遗迹;风景名胜区;或其他特殊重要保护区域
S2	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向) 10 km范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体的:水产养殖区;天然渔场;森林公园;地质公园;海滨风景游览区;具有重要经济价值的海洋生物生存区域
S3	排放点下游(顺水流向) 10 km范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内无上述类型1和类型2包括的敏感保护目标

结合项目建设情况,对照表 6.2-7 和表 6.2-8 内容,本项目生活污水单独收集排入市政污水管网,进入马铺污水处理厂处理;冷却系统排水、一体化净水设施废水等生产废水收集处理后同样排入市政污水管网,进入马铺污水处理厂处理,不排入附近地表水;项目厂区雨水通过雨水管网排入附近地表水(沙溪),水环境功能类别为III类,属于敏感特征为 F2,排放点下游无环境敏感目标,为 S3。因此本项目地表水环境敏感程度划分为 E2 环境中度敏感区。

6.2.3.4 地下水环境敏感程度

依据地下水功能敏感性与包气带防污性能,共分为三种类型,E1为环境高度敏感区,E2为环境中度敏感区,E3为环境低度敏感区,分级原则见表 6.2-9。其中地下水功能敏感性分区和包气带防污性能分级分别见表 6.2-10 和 6.2-11。同一建设项目涉及两个 G 分区或 D 分级及以上时,取相对高值。

表6.2-9 地下水环境敏感程度分级

包气带防污性能		地下水功能敏感性		
一一一一一一一一	G1	G2	G3	
D1	E1	E1	E2	
D2	E1	E2	E3	
D3	E2	E3	E3	

表6.2-10 地下水功能敏感性分区

敏感性	地下水环境敏感特征
始成 C1	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)
敏感 G1	准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他

	保护区,如热水、矿泉水、温泉等特殊地下水资源保护区	
44 Y 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(如热水、矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区。	
不敏感 G3	上述地区之外的其他地区	
a"环境敏感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境敏感区		

表6.2-11 包气带防污性能分级

分级	包气带岩土的渗透性能		
D3	Mb≥1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、稳定		
D2	0.5m≦Mb<1.0m,K≦1.0×10-6cm/s,且分布连续、稳定 Mb≧1.0m,1.0×10-6cm/s <k≦1.0×10-4cm s,且分布连续、稳定<="" td=""></k≦1.0×10-4cm>		
D1	岩土层不满足上述"D2"和"D3"条件		
Mb:岩土层单	Mb:岩土层单层厚度。K: 渗透系数。		

结合项目建设情况,对照表 6.2-10 和表 6.2-11 内容,本项目选址不在上述提到的地下水资源保护区范围内,地下水环境敏感特征为 G3;地块包气带岩土的渗透性能分级为 D2。因此本项目地下水环境敏感程度划分为 E3 环境高度敏感区。

6.2.4 建设项目环境风险潜势判断

环境风险潜势划分方法见表 6.2-12。本项目各环境风险潜势划分等级结果见表 6.2-13。选取建设项目环境风险潜势综合等级取各要素等级的相对高值,因此本项目环境风险潜势为 II 级。

表6.2-12 建设项目环境风险潜势划分表

五块铁路扣束 (E)	危险物质及工艺系统危险性(P)			
环境敏感程度(E) 	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害(P4)
环境高度敏感区(E1)	IV ⁺	IV	III	III
环境高度敏感区(E2)	IV	III	III	II
环境高度敏感区(E3)	III	III	II	I
注: IV+为极高环境风险。				

表6.2-13 本项目环境风险潜势及评价工作等级判定汇总表

类别	环境敏感程度(E)	危险物质及工艺系统危险 性 (P)	环境风险潜势		
环境空气	E3		I		
地表水	E2	P4	II		
地下水	Е3		I		
	本项目综合				

6.3 评价工作等级划分

根据本项目涉及的物质及工艺系统危险性和所在地的环境敏感性,项目环境风险潜势判定为II,并对照下表 3.2-1 确定本项目评价工作等级为三级评价。

表 3.2-1 评价工作等级划分

环境风险潜势	IV 、VI+	III	II	I
评价工作等级	_	<u> </u>	三	简单分析 a

6.4 环境敏感目标概况

根据现场勘察,本评价对项目周围 3km 评价范围内的环境情况进行了调查。在项目 3km 评价范围内的地表水体为沙溪,水环境功能类别为III类;无地下饮用水水源防护敏感区,无自然保护区及野生动物保护区,无风景名胜区、重点文物及名胜古迹,无生态敏感与珍稀野生动植物栖息地等环境敏感点,项目周围主要环境敏感目标分布见表 2.5.2-1;环境保护目标一览表。

6.5 环境风险识别

评价将对本项目运营过程中可能发生的潜在危险进行分析,以找出主要危险环节,认识危险程度,从而针对性地采取预防和应急措施,尽可能将风险可能性和危害程度降至最低。

6.5.1 物质危险性识别

本项目涉及的风险物质及其危险特性见表 6.1-1。

6.5.2 生产系统危险性识别

生产系统环境风险识别主要包括主要生产装置、储运设施、公辅工程设施和环保设施等。

(1) 生产装置

本项目锅炉使用轻柴油进行助燃点火,可能因设施故障或损坏造成轻柴油泄漏 而污染周边环境,一旦遇火源即可发生火灾、爆炸。

(2) 储运工程

除生产装置外,项目其他主要潜在的风险为氨水储罐、轻柴油罐、机油桶以及 危废贮存间等碱溶液或矿物油泄漏引起的污染事故,同时易挥发产生氨气等毒性气

体。

(3) 废气治理设施

本项目锅炉烟气经多管除尘+布袋除尘+石灰石-石膏湿法脱硫+SNCR/SCR 耦合式脱硝工艺处理后通过烟囱达标排放;物料运输、装卸扬尘采取袋式除尘设施处理后通过排气筒排放。如果废气治理设施发生故障,可能导致废气处理不达标直接排放,从而影响周围大气环境质量;或除尘设施收集效率差,废气管线破损等情况导则废气未能有效收集处理,排放浓度超标影响周边大气环境。

(4) 运输过程

本项目原料由供应商车辆运输到厂,运输过程中严格按规范作业,确保各化学品包装物完整不破损。危险废物运输由持有危险废物经营许可证的单位按照其许可证的经营范围组织实施,承担危险废物运输的单位获得交通运输部门颁发的危险货物运输资质。在运输过程中可能由于意外原因产生翻车事故,使化学品及危险废物等物质可能散落、抛出,甚至进入水体,造成环境污染。

6.5.3 环境风险识别结果

本项目环境风险识别结果汇总见表 6.5-1。

表6.5-1 项目环境风险识别表

	THE STATE OF						
序号	危险单元	风险源	主要危险物质	环境风险 类型	环境影响途径	可能受影响的环境 敏感目标	
1		氨水储罐	氨水	泄漏	大气、地表水、 地下水、土壤	周围环境保护目标、 周围地表水,区域地 下水和土壤环境	
2	储运工程	储油罐	轻柴油	泄漏、火灾	大气、地表水、 地下水、土壤	周围环境保护目标、 周围地表水,区域地 下水和土壤环境	
3		机油桶	机油	泄漏、火灾	大气、地表水、 地下水、土壤	周围环境保护目标、 周围地表水,区域地 下水和土壤环境	
4	环保工程	废气治理设施	烟尘、二氧化 硫、氮氧化物、 汞及其化合物、 氨	事故排放	大气	周围环境保护目标	
5		危废贮存间	废机油、废催化 剂等危险废物	泄漏、火灾	大气、地表水、 地下水、土壤	周围环境保护目标、 周围地表水,区域地 下水和土壤环境	
6	运输工程	运输路线	危化品、危险废 物	泄漏、火灾	大气、地表水、 地下水、土壤	周围环境保护目标、 周围地表水,区域地 下水和土壤环境	

6.5.4 危险物质向环境转移的途径识别

(1) 直接污染

直接污染事故的起因通常是设备(包括管线、阀门或其它设施)出现故障或操作失误、仪表失灵等,使有毒有害物质泄漏,弥散在空气中或直接泄漏于地表,对周边环境质量和人群健康造成影响。

(2) 次生/伴生污染

伴生/次生污染主要为可燃或易燃泄漏物遇点火源引发火灾、爆炸事故,火灾爆炸时产生的 CO、NOx 和烟尘等有毒有害烟气,对火灾厂区周围人员的生命安全和周围的大气环境质量造成污染和破坏。火灾事故严重而措施不当时,可能引起爆炸等连锁效应。另外,扑灭火灾或应急处置时产生的消防污水、伴随泄漏物料以及污染雨水若未采取控制措施或控制措施失效,事故废水可能通过雨水管道进入地表水体,造成水体污染。事故废水经土壤渗漏,可能污染地下水。

综上,项目突发环境事故发生时,产生的直接、次生/伴生污染物的扩散途径主要有 大气扩散、水环境扩散、土壤扩散三种,具体见图 6.5-1。

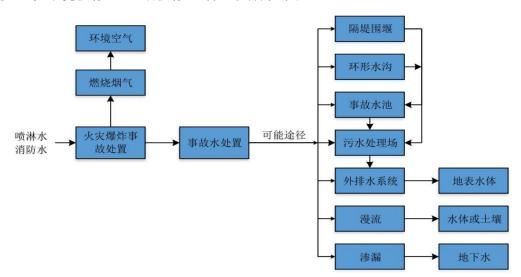


图 6.5-1 风险事故环境影响途径示意图

6.5.5 环境风险类型及危害分析

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 D 风险物质临界量及项目危险物质的最大贮存量识别,本项目重点风险源为氨水罐、柴油罐、机油桶、危废贮存间和废气治理设施。

氨水罐的环境风险类型为氨水泄漏, 向环境转移的可能途径包括大气、地表水、

地下水和土壤。由于连接罐体的管线或阀门损坏、罐体破损等造成氨水泄漏,氨水 易挥发产生的氨气污染大气环境;若泄漏物质未能及时收集截流,可能通过雨水管 网排入附近地表水,或进一步进入区域地下水或土壤环境中。

储油罐和机油桶的环境风险类型为矿物油泄漏,向环境转移的可能途径包括大气、地表水、地下水和土壤。由于储油罐/油桶老化破损、搬运过程磕碰或存放过程发生倾倒等事故造成矿物油泄漏,若泄漏物质未能及时收集截流,可能通过雨水管网排入附近地表水,或进一步进入区域地下水或土壤环境中。柴油/机油为易燃液体,泄漏后若遇火源,易发生火灾事故,产生的燃烧废气污染大气环境。

危废贮存间的环境风险类型为危险废物(废机油、废催化剂等)泄漏和火灾事故,多数危废具有可燃性、毒性,由于仓管人员操作不当、包装物存放时倾倒等事故造成危险废物泄漏,可能影响周边水体;若泄漏物质未能及时收集截流,可能进一步进入地下水或土壤,从而影响区域地下水或土壤环境;泄漏物若遇明火,还可能引发火灾,燃烧时产生的CO会对大气及周边环境造成一定影响。

若项目废气治理设施运行故障时,锅炉烟气事故排放,烟气中的各项污染物超 出排放限值浓度,将对周边环境敏感目标造成不利影响。

6.6 风险事故情形及源项分析

6.6.1 风险事故情形设定

根据《建设项目环境风险评价技术导则》(HJ 169-2018)附录 E, 常见物料泄漏事故类型及频率统计分析见表 6.6-1。

部件类型	泄漏模式	泄漏频率
反应器/工艺储罐/气体 储罐/塔器	泄漏孔径为 10mm 孔径 10min 内储罐泄漏完 储罐全破裂	1.00×10 ⁻⁴ /a 5.00×10 ⁻⁶ /a 5.00×10 ⁻⁶ /a
常压单包容储罐	泄漏孔径为 10mm 孔径 10min 内储罐泄漏完 储罐全破裂	1.00×10 ⁻⁴ /a 5.00×10 ⁻⁶ /a 5.00×10 ⁻⁶ /a
常压双包容储罐	泄漏孔径为 10mm 孔径 10min 内储罐泄漏完 储罐全破裂	1.00×10 ⁻⁴ /a 1.25×10 ⁻⁸ /a 1.25×10 ⁻⁸ /a
常压全包容储罐	储罐全破裂	1.00×10 ⁻⁸ /a
内径≤75mm 的管道	泄漏孔径为 10%孔径全管径泄漏	5.00×10 ⁻⁶ / (m·a) 1.00×10 ⁻⁶ / (m·a)

表6.6-1 物料泄漏频率表

75mm<内径≤150mm 的 管道	洲海科伦方 10%科伦全管伦洲海	2.00×10 ⁻⁶ / (m·a) 3.00×10 ⁻⁷ / (m·a)
囚伶>150mm 囚管項		2.40×10 ⁻⁶ / (m·a) 1.00×10 ⁻⁷ / (m·a)
泵体和压缩机	泵体和压缩机最大连接管泄漏孔径为 10%孔径(最大 50mm) 泵体和压缩机最大连接管全管径泄漏	5.00×10 ⁻⁴ /a 1.00×10 ⁻⁴ /a
装卸臂	装卸臂连接管泄漏孔径为 10%孔径(最大 50mm) 装卸臂全管径泄漏	3.00×10 ⁻⁷ /h 3.00×10 ⁻⁸ /h
装卸软管	装卸软管连接管泄漏孔径为 10%孔径(最大 50mm) 装卸软管全管径泄漏	4.00×10 ⁻⁵ /h 4.00×10 ⁻⁶ /h

火灾和爆炸事故的主要原因见表 6.6-2。

表6.6-2 火灾和爆炸事故原因分析

序号		事故原因
1	明火	厂区内吸烟、机动车辆喷烟排火等。为导致火灾爆炸事故最常见、最直接 的原因
2	违章作业	违章指挥、违章操作、误操作、擅离工作岗位、纪律松弛及思想麻痹等行为是导致火灾爆炸事故的重要原因,违章作业直接或间接引起火灾爆炸事故占全部事故的 60%以上
3	设备、设施质量 缺陷或故障	①电气设备设施:选用不当、不满足防火要求,存在质量缺陷; ②储运设备设施:储设施主体选材、制造安装中存在质量缺陷或受腐蚀、老 化极不正常操作而引起泄漏,附件和安全装置存在质量缺陷和被损坏
4	工程技术和设 计缺陷	①建筑物布局不合理,防火间距不够; ②建筑物的防火等级达不到要求; ③消防设施不配套; ④装卸工艺及流程不合理
5	静电、放电	油品在装卸、输送作业中,由于流动和被搅动、冲击、易产生和积聚静电,人体携带静电
6	雷击及杂散电 流	①建筑物、储罐的防雷设施不齐备或防雷接地措施不足; ②杂散电流窜入危险作业场所
7	其他原因	撞击摩擦、交通事故、人为蓄意破坏及自然灾害等

根据导则要求,设定的风险事故情形发生可能性应处于合理的区间,并于经济发展水平相适应,一般而言,发生概率小于导则 10⁻⁶/年的事件是极小概率事件,可能作为代表性事故情形中最大可信事故设定的参考。本项目设定的情形主要为氨水泄漏导致挥发进入大气环境源强和火灾爆炸事故燃烧产生的 CO 源强情形。

(1) 氨水泄漏导致挥发进入大气环境源强

本项目锅炉烟气脱硝系统使用氨水,采用 30m³储罐存放,储存状态为液态,常压储存。假定氨水储罐底部发生破损,氨水具有挥发性,对大气有一定影响。

本次情景模式设定为: 氨水储罐出现裂口,储罐区四周设有围堰,围堰区地面进行硬化防渗,泄漏的氨水可收储于围堰内,不会排入地表水、地下水和土壤环境中。氨水具有挥发性,泄漏挥发氨气,对周边大气造成一定影响。

(2) 火灾爆炸事故燃烧产生的 CO 源强

项目火灾事故主要为柴油、机油泄漏或危险废物泄漏遇火源导致火灾。火灾燃烧过程中将产生烟尘、CO、消防废水等次生污染物,灭火衍生的洗消废水若收集、处置不当,还可能对周边地表水环境造成不利影响。火灾次生的烟气将对大气环境造成污染。

本次情景模式设定为危险物质泄漏突遇明火引发火灾,据此进行伴生污染物 CO 的计算、预测。

物质名称	CAS 号	毒性终点浓度-1/(mg/m³)	毒性终点浓度-2/(mg/m³)
氨水	7664-41-7	770	110
СО	630-08-0	380	95

表6.6-3 本项目风险物质大气毒性终点浓度

6.6.2 事故源项分析

6.6.2.1 危险物质泄漏挥发进入大气环境源强

(1) 液体泄漏

①液体泄漏量

本项目选取氨水、轻柴油、机油和液体危险废物(废机油)进行评价,液体危险物质的泄漏速率参照《建设项目环境风险评价技术导则》(HJ169-2018)附录 F 推荐的伯努利方程计算:

$$Q_L = C_d A p \sqrt{\frac{2(P - P_0)}{p} + 2gh}$$

式中: Q_L—液体泄漏速率, kg/s;

P—容器内介质压力, Pa, 取 293.15;

P₀—环境压力, Pa, 取 273.15;

p—泄漏液体密度, kg/m³;

g—重力加速度, 9.81m/s²;

h—裂口之上液位高度, m, 取 1:

C₄—液体泄漏系数, 按表 6.6-4 选取, 取 0.6;

A—裂口面积, m², 取 0.005。

表6.6-4 液体泄漏系数 (Cd)

雷诺数 Re	裂口形状				
田 柘剱 Ke	圆形 (多边形)	三角形	长方形		
>100	0.65	0.60	0.55		
≤100	0.50	0.45	0.40		

本项目液体危险物质泄露时间设定为15min,则最大泄漏速率及泄漏量见表6.6-5。

表 6.6-5 项目液态危险物质泄漏速率和泄漏量计算一览表

序号	液态危险废物	密度 kg/m³	最大储量 t	泄漏速率 kg/s	泄露时间	泄漏量
1	氨水	0.91×10^{3}	20	12.11	15min	10.899t
2	轻柴油	0.86×10^{3}	4	11.44	15min	4t
3	机油(含废机油)	0.85×10^{3}	1	11.31	15min	1t

②泄露物料质量蒸发

本项目泄漏物质(氨水)属于可挥发物质,泄漏后收集在储罐区围堰内,形成液池,从而发生蒸发。泄漏液体的蒸发分为闪蒸蒸发、热量蒸发和质量蒸发三种,其蒸发总量为这三种蒸发之和。本项目主要考虑质量蒸发量。

质量蒸发速度 Q3 按下式:

 $Q_{3}\!\!=\!\!a\times\!P\times\!M/\ (\ R\times\!T_{0}\)\ \times u^{\ ^{(2-n)}\,/\,\,^{(2+n)}}\times r^{\ ^{(4+n)}\,/\,\,^{(2+n)}}$

式中: Q3-质量蒸发速率, kg/s

a, n—大气稳定系数, 大气稳定度为稳定, 见表 6.6-6, 选取 n=0.3, a=5.285×10-3。

P---液体表面蒸气压, Pa:

R—气体常数, J/mol·K, 8.314;

T₀—环境温度, K, 298;

U—风速, m/s, 取值 1.5;

r—液池半径, m;

M—分子量。

表6.6-6 a, n系数与大气稳定度关系

大气稳定状况	n	a
不稳定(A, B) 0.2		3.846×10 ⁻³
中性 (D)	0.25	4.685×10 ⁻³
稳定 (E, F)	0.3	5.285×10 ⁻³

液池最大直径取决于泄漏点附近的地域构型、泄漏的连续性或瞬时性。有围堰时,

以围堰最大等效半径为液池半径。项目氨水罐区围堰最大半径 5m。则本项目液体泄漏质量蒸发速率见表 6.6-7。

表6.6-7 本项目液态危险物质泄漏质量蒸发量估算

事故	物料	液池面积(m²)	质量蒸发速率(kg/s)
氨水泄漏挥发	氨水	78.5	0.568

(2) 气体泄漏

本项目不涉及气体危险物质,不存在气体泄漏风险事故。

6.6.2.2 火灾伴生/次生污染物源强

(1) 伴生/次生污染物 CO

轻柴油、机油属于可燃物质,泄漏后若处理不当可能引发火灾。假设这几种物质任一容器或管道泄漏,并引发火灾,不完全燃烧将产生一定量的 CO。

参照《建设项目环境风险评价技术导则》(HJ169-2018)中油品火灾伴生/次生一氧化碳产生量计算方法如下:

$$G_{CO}=2330qCQ$$

式中: Gco—一氧化碳的产生量, kg/s;

C—物质中碳的质量百分比含量;

q—化学不完全燃烧值,取 1.5%~6.0%,本评价取 6%;

O—参与燃烧的物质量,t/s。

根据上述公式,泄漏风险物质的最大泄漏量 100%参与燃烧,火灾持续时间 3 小时,则泄漏物质燃烧产生的 CO 排放源强见表 6.6-9。

表6.6-9 火灾产生CO速率汇总

事故名称	泄漏化 学物质	碳的质量 百分比含 量(%)	参与燃烧 的物质量 (t/s)	CO 产生 速率 (kg/s)	火灾持 续时间	CO 产生 量(t)
柴油泄漏引发火灾、爆炸	次生 CO	85	0.0114	1.355	3h	14.634
机油泄漏引发火灾、爆炸	次生 CO	85	0.0056	0.665	3h	7.182
废机油泄漏引发火灾、爆炸	次生 CO	85	0.0056	0.665	3h	7.182

(2) 火灾爆炸事故中未参与燃烧有毒有害物质的释放量

对照《建设项目环境风险评价技术导则》(HJ169-2018)附录 F 中的表 F.4,火灾爆炸事故中不涉及未参与燃烧的有毒有害物质。

6.6.2.3 项目事故源强汇总

综上分析可得,本项目发生各种最大可信事故时的源强情况汇总见表 6.6-10。

质量蒸发 释放或 释放或 最大释 风险事故情形 事故类型 泄漏时 放或泄 速率 kg/s 泄漏速 危险单元 危险物质 描述 率 kg/s 间/min 漏量/kg F 氨水泄漏 氨水罐 氨水 12.11 15min 10899 0.568 液体泄漏 轻柴油泄漏 储油罐 轻柴油 11.44 15min 4000 / 机油泄漏 危废贮存间、柴油桶 机油 1000 11.31 15min / 轻柴油泄漏引发 储油罐 CO 180 14634 / 1.355 火灾、爆炸 伴生/次生 机油泄漏引发火 污染物 柴油桶 CO 0.665 180 7182 灾、爆炸 CO 排放 废机油泄漏引发 危废贮存间 CO 0.665 180 7182 火灾、爆炸

表6.6-10 项目源强汇总一览表

6.7 环境风险预测与评价

本项目存在多个重大风险源,本次评价选取毒害性较大,影响范围较广的因子进行 预测。液体物质的泄漏影响主要选取氨水泄漏进行预测,采用有毒有害物质在大气中的 扩散模型进行预测。

6.7.1 有毒有害物质在大气中的扩散预测与评价

6.7.1.1 预测模型选取

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 G 中推荐的理查德森数进行判定,重质气体选择 SLAB 模型进行预测,轻质气体选择 AFTOX 模型进行预测。本项目预测模型选择见表 6.7-1。

序号	事故情形	气象条件	判断结果	预测模型
1	氨水泄漏挥发	最不利气象	轻质气体	AFTOX

表6.7-1 大气风险预测模型选择一览表

6.7.1.2 预测范围与计算点

预测范围:一般为预测物质浓度达到评价标准时的最大影响范围,本次评价预测范围,取 3km。

计算点:本次预测设置一般计算点,距离风险源下风向 500m 范围内的计算点间距设置为 10~50m,大于 500m 范围内的计算点间距设置为 50~100m。

6.7.1.3 预测模型主要参数

根据《建设项目环境风险评价技术导则》(HJ169-2018),其中最不利气象条件取 F 类稳定度,1.5 m/s 风速,温度 $25 ^{\circ}$ C,相对湿度 $50 ^{\circ}$ 。项目泄漏事故发生时不考虑地形 对扩散的影响。

6.7.1.4 预测评价标准

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 H,选择氨气的大气毒性终点浓度值作为预测评价标准,大气毒性终点浓度值详见表 6.6-3。

6.7.1.5 预测结果及评价

根据 AFTOX 模型进一步预测计算可知,氨气在最不利气象条件下的扩散过程中,下风向 30min 内最大落地浓度为 2808.2mg/m³,最大影响距离为 10m,主要范围影响在项目厂区内,0.26min 达到毒性终点浓度-1(770mg/m³)的区域,0.8min 达到毒性终点浓度-2(110mg/m³),预测结果见表 6.7-2 和图 6.7-1。

风		最大落地浓	出现距离	1 記 強		性终点 区域	浓度-1 的	大于毒	性终点》 区域	浓度-2 的
速	稳定度	政八谷地水 度(mg/m³)	(m)	出现时间	起始距 离(m)	结束 距离 (m)	发生时间 (min)	起始距 离(m)		发生时间 (min)
1.5	F	2808.2	10	0.08min	24	28	0.26	95	98	0.8

表6.7-2 氨气扩散大气毒性终点浓度值选取

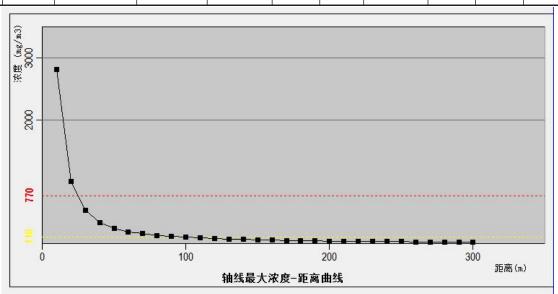


图 6.7-1 氨气扩散预测结果图

6.7.2 有毒有害物质在地表水、地下中的运移扩散预测与评价

有毒有害物质进入水环境的途径包括事故直接导致和事故处理处置过程间接导致

的情况,一般为瞬时排放源和有限时段内排放的源。本项目涉及的液态风险物质主要为 氨水、轻柴油、机油以及废机油。设有水封型氨水储罐,储罐区四周设置围堰,地面进 行硬化防渗处理;轻柴油采用撬装式油罐盛装,柴油桶底部加垫防渗漏托盘,不存在向 下渗扩散到地下水环境的情况;危废贮存间建设严格按照《危险废物贮存污染控制标准》 (GB18597-2023)要求进行防腐防渗建设,并设置堵截渗漏的裙脚,仓库内设置足够数 量的应急收集桶,能及时收集转移泄漏的液体至事故应急池,不存在向下渗扩散到地下 水环境的情况。事故处理处置过程中产生的洗消废水通过应急收集桶收集转移至应急池 内,厂区地面均进行水泥硬化,事故消防废水经雨水管网收集至事故应急池内,雨水管 网总排口设有截留阀,能有效截留有毒有害物质向地表水中排放。因此项目液态有毒有 害物质发生泄漏时能临时收集在贮存区域内,不会向周边地表水和地下水环境中转移扩 散。

6.7.3 消防事故废水影响与评价

6.7.3.1 事故废水产生情况

本项目事故废水产生原因主要有以下几种情况:①当生产不正常造成工艺物料泄漏;②发生火灾时污染厂区内产生大量消防废水;③火灾事故发生时厂区内收集的初期污染雨水等。

6.7.3.2 消防及事故污水的特点

当发生火灾风险事故时,将用到大量消防水来灭火;或发生液体危险物质泄漏时, 泄漏出来的物料混入消防水,消防水即被污染。消防污水具有以下几个特点:

①消防污水量变化大

消防废水量与消防时实际用水量有关,而消防实际用水量与火灾严重程度密切相关。 当火灾处于初期或程度比较轻时,消防实际用水量就小,产生的消防废水也就少;当火 灾程度比较严重时,消防实际用水量就大,产生的消防废水量也就多。

②污水中污染物组分复杂

不同的危险物质泄漏,消防废水中污染物组分都会不同,污染物的浓度也会有很大差异。本项目消防废水中可能含有的危化品成分。一旦消防用水量大于事故水池的容积,消防污水将可能进入周边地表水体,对水体水质、生态环境造成较大的影响。因此,消防污水的收集与处理是十分必要的。

6.7.3.3 事故废水应急池计算

参考《事故状态下水体污染的预防和控制规范》(Q/SY08190-2019)的有关要求, 事故储存设施总有效容积计算公式如下:

$$V = (V_1 + V_2 - V_3) + V_4 + V_5$$

式中: V₁----收集系统范围内发生事故的一个罐组或一套装置的物料量(储存相同物料的罐组按一个最大储罐计,装置物料量按存留最大物料量的一台反应器或中间储罐计)。

V2---发生事故的储罐或装置的消防水量。

V3---发生事故时可以转输到其他储存或处理设施的物料量。

V4---发生事故时仍必须进入该收集系统的生产废水量。

V5---发生事故时可能进入该收集系统的降雨量。

①泄漏物料量 V₁

项目储罐泄漏物料量以氨水罐最大储罐 30m3 计, V₁ 为 30m3。

②消防水量 V₂

消防水量的计算公式: $V_2=\sum Q_{ii}\times t_{ii}$

式中: Q₁₁---发生事故的储罐、装置同时使用的消防设施给水流量, m³/h。

t_消——消防设施对应的设计消防历时, h。

根据《消防废水及消火栓系统技术规范》(GB50974-2014),本评价消防历时取 2 小时,消防用水量详见下表:

	序号	装置名称	室内消防用水量 L/s	室外消防用水量 L/s	火灾延续时间	消防水量 V2
	1	煤棚/生物质料仓	15	20	2h	252m ³
Γ	2	氨水罐	0	20	2h	144m³
	3	储油罐	0	20	2h	144m³

表 6.7-4 消防用水量统计表

③转移物料量 V₃

主要以围堰形成的可利用容积计算,详见下表:

表 6.7-5 厂区围堰容积统计表

序号		设计容积 V ₃
1	初期雨水池	77m ³
2	氨水罐区围堰	35m ³

④项目泄漏物料、消防废水量及转移物料量情况 $(V_1 + V_2 - V_3)_{max}$

序号 装置名称 单位 V_1 V₂ V_3 $V_1 + V_2 - V_3$ 煤棚/生物质料仓 m^3 252 77 1 0 175 氨水罐 2 m^3 30 144 35 139 储油罐 m^3 144 144

表 6.7-6 (V₁+ V₂- V₃) max 统计表

从上表可以看出,厂区($V_1+V_2-V_3$) $_{max}$ 单元为煤棚。故拟建项目($V_1+V_2-V_3$) $_{max}=175m^3$ 。

⑤发生事故时仍必须进入该收集系统的生产废水量 V4

无排入该系统的生产废水量, V₄=0m³。

⑥降雨量 V₅

进入事故水收集系统的降雨量采用下列公式计算:

$$V_5=10qf$$

式中, q---降雨强度, mm; 按平均日降雨量; q=qa/n

qa---年平均降雨量, mm;

n---年平均降雨日数;

f---必须进入事故废水收集系统的雨水汇水面积;项目取 0.45ha;

本地区多年平均降雨量为 1676.9mm, 年平均降雨天数按照 179d。经计算,降雨量为 42.16m³。

⑦事故废水总量 V 🛚

综上所述,本项目事故池容积计算结果见表 6.7-7。

表 6.7-7 项目事故池容积计算表(单位 m³)

$(V_1+V_2-V_3)_{max}$	V_4	V_5	V ä
175	0	42.16	217.16

根据上表 6.7-7 计算可知,项目所需的事故应急池容积至少为 218m³。厂区内规划建设 1 座事故应急池,计划用于收纳厂区事故废水,容积 220m³,设计容积可以满足本项目事故时废水储存要求。事故应急池为地埋式,当事故消防时,需切断雨水排出管末端的阀门,事故废水汇集至厂区雨水管网内,经自吸泵将雨水管网内的事故废水抽至事故废水池内,事故池积满后,剩余事故废水暂存在雨水管网中。待事故过后由自吸泵提升至厂区废水站处理达后排至市政污水管网。

6.8 环境风险管理与防范措施

6.8.1 环境风险防范措施

6.8.1.1 总图布置和建筑安全防范措施

- (1) 厂区总平面布置时,应顺应生产流程布置,严格执行有关标准、规范和规定,并考虑各类工艺生产装置之间的防火间距,以及工艺生产装置与重要辅助设施、道路、行政设施等的防火间距。厂区内道路和厂外道路相连,以利于事故状态下人员疏散和抢救。
 - (2) 合理设计装置内外竖向标高,使雨水排放顺畅。
- (3)装置内的建筑结构抗震指标按当地地震的基本烈度设计,建筑物的耐火等级、防火间距、疏散通道、安全距离等均按有关规范执行。

根据所使用物料的性质确定各个装置的耐火等级、防火间距、消防车通道的配置。建筑物采用屋面避雷针,防止直接雷击及感应雷击。

6.8.1.2 危化品泄漏风险防范措施

(1) 加强危险物质贮存管理

减少原辅料、产品的贮存量,使危害减到尽可能小的程度。建立专门的物料储罐、产品库用于存储原辅料、产品,合理布局,贮存场所尽可能远离人群较多的地方,加强通风,远离热源、高温、明火,避免阳光直射,采取防火、防爆、防静电、防雷等措施,设置明显的安全警示标志。专人进行管理,非操作人员不得随意进入,配备自动探测仪、自动报警连锁系统、防火消防设施和个人防护用品。

- (2) 危化品泄漏防范措施
- ①氨水罐泄漏防范措施

项目氨水罐可安装泄漏装置,储存管理应符合《危险化学品安全管理条例》、《仓库防火安全管理规则》等规范要求。定期对储罐以及输送管线进行检查,减少"跑、冒、滴、漏"现象发生,加装安全阀和泄压装置,减小危险物质发生泄漏概率。氨水罐区设置围堰、废液收集沟和废液收集池装置,并连接厂区事故应急池。

②储油间泄漏防范措施

各类矿物油在厂内储存和使用的过程中应严格按照危险化学品管理要求,规范员工的风险意识和操作水平,避免在厂内使用和转移过程中发生泄漏事故。柴油罐以及机油

桶存放区应设置禁烟火标识,定期巡查排除油罐/桶破损泄漏事故,油罐/桶底部加垫防渗托盘,柴油罐管线定期质检更换,避免管线老化破损。

③危废贮存间泄漏风险防范措施

废机油、污泥等危险废物存放于危废贮存间,危废贮存间的建设应严格按照《危险废物贮存污染控制标准》(GB18597-2023)要求进行防腐防渗防雨防淋,并设置堵截渗漏的裙脚,渗透系数低于≤10⁻¹⁰cm/s,应规划废液收集沟和废液收集池。仓库内设置足够数量的应急收集桶,用于收集泄漏液体。

(3) 加强危化品运输管理

- ①严格按照国家有关危险化学品运输的规定进行管理,对运输单位资质、运输人员资质、货物装载、运输路线等严格把关,确保运输安全。运输采用多次小规模进行,必须由危险品运输资质单位负责;运输车辆不得超载、超速,悬挂危险货物运输标志。
- ②运输危险品的容器在使用前应当检查,做好检查记录,积极配合质检部门对运输容器的产品质量进行定期检查,并根据质检部门提出的建议和措施严格落实。
 - ③搬运时轻装轻卸,防止容器破损。

6.8.1.3 废气事故排放环境风险防范措施

若锅炉烟气治理系统运行故障,会造成锅炉烟气超标排放,影响大气环境。建设单位应认真做好设备的保养,定期维护、保修,使处理设施达到预期效果,为确保不发生事故性废气排放,建设单位应采取以下防范措施:

- (1) 各生产环节严格执行生产管理的有关规定,加强设备的检修及保养,提高管理人员素质,并设置设备事故应急措施及管理制度,确保设备长期处于良好状态,使设备达到预期处理效果。
- (2)现场作业人员定时记录废气处理状况,如废气处理设施的处理系统、抽风机等设备进行点检工作,并派专人巡视,遇不良工作状况立即停止车间相关作业,维修正常后再开始作业,杜绝事故性废气直排,待检修后再通知生产车间相关工序。

6.8.1.4 事故废水环境风险防范措施

项目外排废水一旦发生事故性外排,未经处理而直接排入污水管网,会对下水道水质造成影响,对收纳污水处理厂产生水质冲击。因此,项目事故废水必须做到全部收集处理,杜绝事故外排。

厂区拟设置三级防控体系,对事故废水进行环境风险防范,具体如下:

(1) 一级防控措施

危化品以及危险废物贮存设置防渗漏托盘或围堰装置,能够有效收集泄漏物料。

(2) 二级防控措施

依托厂区已建设的事故应急池,可以将事故废水、消防废水等通过防渗管沟、管道 导入事故水池,待日后处理达标后排放。

(3) 三级防控措施

对厂区污水和雨水总排放口设有切断装置,并设置导排管线导排至事故应急池,封堵事故废水在厂区内,防止事故情况下物料经雨水或者污水管网排入附近地表水体。

项目事故废水收集系统见图 6.8-1。发生泄漏时泄漏液经废水到导排管沟、管道流至事故应急池。厂区发生火灾、爆炸事故时,首先切断厂区污水总排口,事故废水、消防污水经废水导排管沟、管道自流至事故应急池。事故处理结束后进行处置。

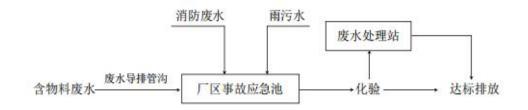


图 6.8-1 项目事故废水收集系统

6.8.1.5 地下水环境风险防范措施

针对本项目可能发生的地下水污染,地下水污染防治措施按照"源头控制、分区防控、污染监控、应急响应"相结合的原则,从污染物的产生、入渗、扩散、应急响应全阶段进行控制。

- (1)源头控制措施:主要包括在工艺、地面、围堰、应急池采取相应措施,防止和降低泄漏废液跑、冒、滴、漏,将污染物泄漏的环境风险事故降到最低程度。危化品储罐/容器、危废贮存间设置防渗漏托盘;物料输送管道采用强度高、腐蚀裕度大的管道材料和高等级防腐材料,尽量使用焊接连接,不得使用承插管;事故应急池池体内表面均涂刷 2mm 厚环氧树脂。
- (2)末端控制措施:主要包括建设区域污染区地面的防渗措施和泄漏、渗漏污染物收集措施,即在污染区地面进行防渗处理,防止洒落地面的污染物渗入地下,并把滞留在地面的污染物收集起来,回收至危废贮存间;末端控制采取分区防渗,按重点污染防治区、一般污染防治区和非污染区防渗措施有区别的防渗原则。氨水罐、柴油罐等风

险单元地面采取地面硬化、防渗树脂涂层措施,氨水罐区设置围堰;危废贮存间应按规范设计防晒、防雨、防腐、防渗漏、防护围堤等措施,对地面进行防腐、防渗设计,危废仓四周设导流管道,地面坡度 3%等源头控制措施。

- (3)污染监控:建立场地区地下水环境监控系统,建立完善的监测制度和环境管理体系,制定监测计划,及时发现污染、控制污染。
- (4) 风险事故应急响应:及时制定地下水风险事故应急响应预案,预案中明确风险事故状态下应采取的封闭、截留等措施,提出防止受污染的地下水扩散和对受污染的地下水进行治理的具体方案。

6.8.2 突发环境事件应急预案编制要求

6.8.2.1 应急预案编制要求

制定完善、有效的环境风险事故应急预案,报送当地生态环境主管部门备案,并定期演练。项目环境风险应急应与所在片区进行有效联防联控。

应急预案应按照国家、地方和相关部门要求进行编制,主要内容包括原适用范围、 环境事件分类与分级、组织机构与职责、监控和预警、应急响应、应急保障、善后处置、 预案管理与演练等内容。

应急预案应明确企业、区域、地方政府环境风险应急体系。企业突发环境事件应急 预案应体现分级响应、区域联动的原则,与地方政府突发环境事件应急预案相衔接,明 确分级响应程序。

6.8.2.2 应急预案主要内容

为建立健全环境污染事故应急机制,强化风险评估、隐患排查、事故预警和应急处置四项工作机制,提高企业应对突发环境污染事故的能力和企业应急预案的科学性、有效性和可操作性,保证职工和公司周围群众的生命安全和职业健康,按照《中华人民共和国环境保护法》、《企业事业单位突发环境事件应急预案备案管理办法(试行)》、《企业事业单位突发环境事件应急预案评审工作指南(试行)》和《建设项目环境风险评价技术导则》(HJ169-2018)等相关文件要求,积极应对风险物质泄漏、火灾、环境治理设施故障等事故引起的突发环境事件,规范公司环境应急管理工作、提高应对和防范突发环境事件能力,制定适合本项目的环境风险事故应急预案。应急预案主要内容见表 6.8-1。

表 6.8-1 应急预案主要内容

项目	内容及要求
预案适用 范围	明确预案适用的主体、地理或管理范围、事件类别、工作内容
突发环境 事件分类 与分级	结合自身实际情况和危险源的潜在危险性及突发环境事件风险评估结论,按照突发环境事件的严重性和紧急程度,将突发事件分为一级环境事件、二级环境事件和三级环境事件三个级别。 一级环境事件为区域级事件,二级环境事件为公司级事件,三级环境事件为车间级事件
组织机构 与职责	以应急组织体系结构图、应急响应流程图的形式,说明组织体系构成、应急指挥运行机制,配有应急队伍成员名单和联系方式表。明确组织体系构成及职责。明确应急状态下指挥运行机制,建立统一的应急指挥、协调和决策程序。根据突发环境事件的危害程度、影响范围、周边环境敏感点、企业应急响应能力等,建立分级应急响应机制,明确不同应急响应级别对应的指挥权限。说明企业与政府及其有关部门之间的关系。
监控和预警	建立企业内部监控预警方案,明确监控信息的获取途径和分析研判方式方法,明确企业内部预警条件,预警等级,预警信息发布、接收、调整、解除程序、发布内容、责任人;明确企业内部事件信息传递责任人、程度、时限、方式、内容等;明确企业向当地人民政府及环保部门报告的责任人、程度、时限、方式、内容等,辅以信息报告格式规范;明确企业向可能受用心的居民、单位通报的责任人、程度、时限、方式、内容等。
应急响应	根据环境风险评估报告中的风险分析和情景构建内容,说明应对流程和措施,体现企业内部管控污染源-研判污染范围-控制污染扩散-污染处置应对流程和措施。体现必要的企业外部应急措施、配合当地人民政府的响应措施及对当地人民政府应急措施的建议。分别说明可能的事件情景及应急处置方案,明确相关岗位人员采取措施的时间、地点、内容、方式、目标等。将应急措施细化、落实到岗位,形成应急处置卡。
应急保障	说明环境应急预案涉及的人力资源、财力、物资以及其他技术、重要设施的保障
善后处置	说明事后恢复的工作内容和责任人,一般包括:现场污染物的后续处理;环境应急相关设施、设备、场所的维护;配合开展环境损害评估、赔偿、事件调查处理等
预案管理 与演练	安排有关化解应急预案的培训和演练,明确环境应急预案的评估修订要求

6.9 小结

6.9.1 项目危险因素

根据项目环境风险潜势及评价等级判定,本项目环境风险评价等级为三级。

根据项目风险源调查,本项目涉及的风险物质主要为原辅料(氨水、轻柴油、机油)以及危险废物,涉及的风险单元主要是氨水罐区、柴油罐、机油间、危废贮存间以及废气处理设施。建设单位应进一步优化风险单元平面布局,以及减少风险物质贮存量的措施来降低项目环境风险等级。

6.9.2 环境敏感性及事故环境影响

根据对项目评价范围内的周边环境敏感目标进行调查,本项目 5km 范围内存在的敏感目标以居民区和学校为主。同时根据环境风险预测结果,在最不利气象条件下,项目氨水泄漏扩散主要范围影响在项目厂区内,氨气泄漏在 0.2min 达到毒性终点浓度-1 (770mg/m³)的区域,0.8min 达到毒性终点浓度-2 (110mg/m³),项目环境风险事故对周边环境影响小。

6.9.3 环境风险防范措施和应急预案

建设单位从危化品贮存管理、运输管理以及贮存防渗防漏方面进行危化品的泄漏风险防范,设置规范的贮存仓、储存容器等措施;并制定环保设施管理制度,定期开展检修工作,进一步防范废气、废水事故排放环境风险;厂区设置三级防控体系,建设事故应急池和雨水、污水总阀等环境风险防范措施。建设单位应按时完成事故应急池等各项风险防范措施的建设,规范公司环境应急管理工作、提高应对和防范突发环境事件能力,制定环境风险事故应急预案。

6.9.4 环境风险评价结论与建议

根据本次项目环境风险专项评价内容,本项目在最不利气象条件下,项目有毒有害物质在大气中的扩散预测影响小,项目各项风险防范措施基本可行,建设单位应严格参照落实。环境风险评价自查表见表 6.9-1。

工作内容		评价情况						
	会 险	名称	氨水		轻柴油	机油		危险废物
	危险物质	存在总量/t	20		4	0.5		15.905
风		大气	500 m 范围[内人	口数_350_人	5 km	范围内人	口数 <u>5700</u> 人
险		入"【	每公里管段	每公里管段周边 200 m 范围内人口数 (最大)			:大)	<u>/</u> 人
调	评价范围	地表水	地表水功能敏感性		F1 □	F2 ☑		F3 □
查	一件训犯国		环境敏感目标分级		S1 □	S2 □		S3 ☑
		地下水	地下水功能敏感性		G1 □	G2 □		G3 ☑
			包气带防污性能		D1 □	D2 ☑		D3 □
<i>ll-lm</i> ⊑	医五十廿岁	Q值	<i>Q</i> <1 □		1≤ <i>Q</i> <10 ☑	10≤ <i>Q</i> <	100 🗆	<i>Q</i> >100 □
	质及工艺系 充危险性	M 值	M1 □		M2□	M3 ☑		M4 □
- 43	儿已险注	P 值	P1 □	P1 □		P3		P4 ☑
17. H	竟敏感程度	大气	E1 🗆		Е2 🗆		E3 ☑	
까	見 以 心 性 / 文	地表水	E1 □		E2☑			Е3 □

表6.9-1 环境风险评价自查表

		地下水	E1 □	E2 □		E3 ☑	
环均	环境风险潜势		III 🗆	II 🗹	Ι□		
ì	平价等级	一级		二级团	三级 🗹	简单分析 □	
风险	物质危险 性	有毒有	害 ☑	易燃易爆 ☑			
识	风险类型	泄漏	\checkmark	火灾引发	定伴生/次生污染	∵物排放 ☑	
别	影响途径	大气	V	地表水 🗹		地下水 🗹	
事古	放情形分析	源强设定方法	计算法☑	经验估算法[其他估算法□	
风		预测模型	SLAB □	AFTOX ☑		其他□	
险	大气	预测结果		大气毒性终点浓度.	-1 最大影响范围	围 <u>28</u> m	
预		贝例纪木		大气毒性终点浓度-2 最大影响范围_98_m			
测	地表水		最近环境	竟敏感目标 <u>/</u> ,到达时间 <u>/</u> h			
与	ut z t		下	游厂区边界到达时间 <u>/</u> d			
评 价	地下水		最近环境	竟敏感目标 <u>/</u> ,到达时间 <u>/</u> d			
重点	点风险防范 措施	①总图布置和建筑安全防范措施:厂区总平布置严格执行有关标准、规范和规定,考虑各工艺装置之间的防火间距、抗震指标、耐火等级、疏散通道等。②危化品泄漏风险防范措施:危化品按要求储存管理,罐区设置围堰、废液收集沟和废液收集池;危废贮存间建设需进行防腐、防渗、防雨、防淋,并设置堵截渗漏的裙脚或设置导流沟、收集槽等。③废气事故排放环境风险防范措施:做好废气设备的维护、保修工作。④事故废水环境风险防范措施:设置三级防控体系,危废贮存间设置围堰截留,依托一区内已建设的事故应急池,临时收集事故废水,厂区雨污管网总排口设置切断装置等。⑤地下水环境风险防范措施:按照"源头控制、分区防控、污染监控、应急响应"相结合的原则落实生产车间、实验室、化学品间以及危废贮存间的地面防渗措施。					

7 环境保护措施及其可行性论证

7.1 大气污染防治措施及可行性

7.1.1 废气收集措施

1、锅炉烟气

本项目设置 2 台 40t/h 循环流化床锅炉, 2 台锅炉烟气经"脱硝(低氮燃烧技术+SNCR/SCR 耦合式脱硝,脱硝效率≥80%)+多管除尘-布袋除尘(两道高效除尘效率99.9%)+湿法脱硫(石灰石-石膏湿法烟气脱硫,脱硫效率不小于95%、协同除尘效率大于等于50%)"处理后汇总至 1 根 45m 高的烟囱排放,烟囱内径 2.2m。

2、物料装卸、破碎扬尘

本项目煤炭/生物质燃料经输送皮带运至炉前料仓,落料粉尘经仓顶设置的布袋除尘器收集净化后通过排气筒有组织排放。煤炭破碎粉尘经破碎机台上方加设的集气装置收集后,进入布袋除尘器收集净化后通过排气筒有组织排放。灰库和石灰石粉仓分别经各自仓顶的布袋除尘器收集净化后分别通过排气筒有组织排放。

粉尘收集效率参照《主要污染物总量减排核算技术指南》(2022 年修订)中对各类 收集方式的收集效率认定,见表 7.1-1,仓体密闭,废气收集效率可参照取值 80%。

15 F 16 F	रहेक रोजा	密闭空间(含铬	图式集气罩)	半密闭集	包围型集	符合标准	++ /-
度气收集 方式	密闭管道	负压	正压	气罩(含排 气柜)	气罩(含 软帘)	要求的外 部集气罩	其他收集方式
废气收集率	95%	90%	80%	65%	50%	30%	10%

表 7.1-1 废气收集效率情况一览表

3、氨水储罐废气

氨水罐采取密封式储罐,少量逸出的氨气以无组织形式排放。

本项目废气收集、处理工艺流程见图 7.1-1。

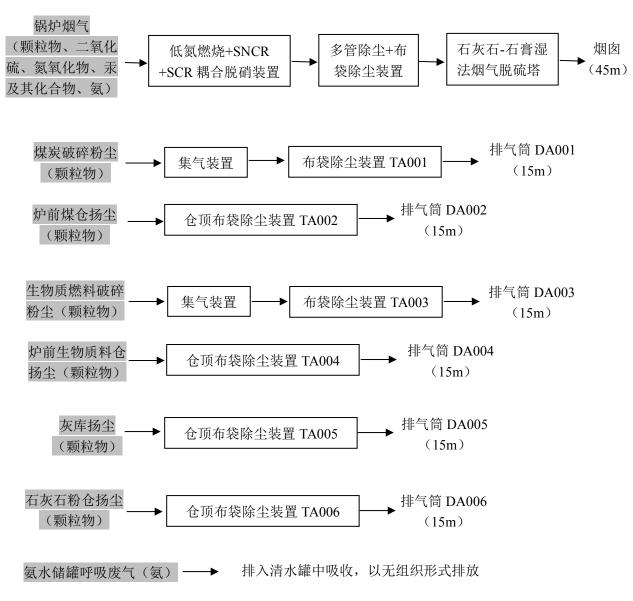


图 7.1-1 项目废气收集处理工艺图

7.1.2 锅炉烟气处理工艺可行性

1、脱硝措施可行性

本项目烟气脱硝采用选择性低氮燃烧+非催化还原法脱硝工艺(SNCR)+选择性催化还原法脱硝工艺(SCR)。

①锅炉低氮燃烧技术

循环流化床锅炉的氮氧化物排放最主要的特征是其对燃料性质、床温和空气量的敏感性。循环流化床锅炉之所以可以抑制 NO_X 的生成,主要是由于以下两个原因:一是低温燃烧,循环流化床锅炉床温一般可控制在 800~950 °C之间,此低温燃烧方式有效地抑制了热力型和快速型 NO_X 的生成,其中热力型 NO_X 产生更少,可忽略不计。二是分段

燃烧,其原因在于挥发分中包含了大量的 N,在燃烧室内很快析出,此时由于缺氧会大大降低 NOx 的生成量,并使部分 NOx 在富氧区析出与 C、CO 反应还原为 N。因此氮氧化物低排放是循环流化床锅炉的一个非常吸引人的特点。

循环流化床锅炉采用的低氮燃烧技术控制 NOx 的产生,主要特点如下:

- A. 选择合适的床温:降低床温可以有效地控制 NO_x 的排放水平,但是 CO 浓度会增大,燃烧效率会下降,综合考虑各方面因素的影响,将循环流化床锅炉床温控制在850~950℃,以达到最佳运行效果。
- B. 采用分级送风:采用分级送风,适当地降低一次风率,增大二次风率可大大降低 NOx 的排放量。将约 50%的燃烧空气作为二次风送入密相区上方的一定距离,NOx 的排放量可望达到最小值。
- C. 二次风布局方式: 在上述分级送风的基础上,对二次风进行合理布局,采用前后墙布置,分上下层,从而使锅炉燃烧区由原来一个区即燃烧室,改成两个区即燃烧室区和二次风区;进而减少锅炉燃烧室局部高温的可能性及提高烟气在炉膛的扰动,可有效降低 NOx 排放浓度。
- D. 采用高循环倍率的锅炉:最大循环倍率可加强烟气中 NO 与焦炭的还原反应, 使 NOx 初始排放浓度下降。

②SNCR+SCR 脱氮技术

本项目 SNCR 工艺采用 20%浓度的氨水作为还原剂, SNCR 脱硝工艺主要由氨水储存、加压计量系统及氨水喷射系统等组成,喷射系统主要用来喷射氨水混合液,并由压缩空气实现雾化后,与烟气中 NOx 发生化学反应,脱除烟气中 NOx,喷射位置选择在炉膛出口(分离器入口)区域。SCR 反应器布置于锅炉尾部烟道内,SCR 系统不单独设置喷氨装置,脱硝所需的氨利用 SNCR 反应后剩余的氨进行脱硝。把 SNCR 工艺的还原剂喷入炉膛技术同 SCR 工艺利用逃逸氨进行催化反应的技术结合起来,进一步脱除 NOx。

③脱硝系统氨逃逸过程控制

氨逃逸主要来自锅炉配套脱硝装置运行时,未与烟气中 NOx 进行反应逃逸的还原剂,项目在脱硝系统每个 SCR 反应器出入口各设置一套 NO、O₂ 分析系统,在每个反应器出口各设置一套 NH₃ 分析系统用于分析控制氨逃逸量。本项目 SNCR/SCR 装置氨逃逸率设计小于 3ppm。

NO、O₂分析系统和 NH₃分析系统连接并响应来自机组燃烧控制系统、在线 NOx、

O₂、逃逸氨的控制信号,通过调节阀自动调节反应剂流量,对 NOx 水平、锅炉负荷、 逃逸氨浓度、燃料或燃烧方式的变化做出响应,打开或关闭喷射区或控制其质量流量。 每一个子系统可相互独立地进行运行和控制,该特性允许隔离每个子模块进行维修且不 会严重影响工艺性能或总体的 NOx 还原效果。

④脱硝技术可行性

根据《污染源源强核算技术指南 锅炉》(HJ991-2018)中附录 B, SNCR-SCR 联合的氮氧化物去除效率为 55%~85%, 并且按照第二次全国污染源普查产排污核算系数手册中锅炉产排污量核算系数手册, 燃煤循环流化床炉的 SNCR-SCR 联合的氮氧化物去除效率为 80%, 因此本次评价低氮燃烧+SNCR-SCR 联合脱硝效率取值 80%可信。

根据废气源强计算,锅炉燃烧过程产生的氮氧化物经"低氮燃烧+SNCR-SCR 联合脱硝"处理后排放浓度为 40mg/m³,排放浓度低于《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1 号)的氮氧化物 50mg/m³ 的要求,其处理措施可行。

2、烟气除尘措施可行性

①除尘工艺

本次工程选用一次除尘(多管除尘器+布袋除尘器)+二次除尘(湿法脱硫协同除尘)相结合的协同除尘技术。

袋式除尘技术是利用纤维织物的拦截、惯性、扩散、重力、静电等协同作用对含尘气体进行过滤的技术。当含尘气体进入袋式除尘器后,颗粒大、比重大的烟尘,由于重力的作用沉降下来,落入灰斗,烟气中较细小的烟尘在通过滤料时被阻留,使烟气得到净化,随着过滤的进行,阻力不断上升,需进行清灰。配置脉吹清灰装置,脉冲装置使用寿命≥100万次,清灰时,反吹气流采用压缩空气,吹至除尘器内移动气箱,气箱对滤袋依次进行吹扫清灰。

烟气除尘系统技术参数见表 7.1-2。

序号 项目 单位 数量/参数 设计除尘效率 % 99.9 1 除尘器阻力 2 Pa 1200 过滤风速 3 m/s 0.85 m^2 4 过滤面积 1800 5 滤袋连续正常使用温度 $^{\circ}$ C 160 本体漏风率 6 % ≤3

表 7.1-2 锅炉烟气除尘系统技术参数一览表

7	仓室数	个	8
8	滤袋规格	mm	160*6000
9	滤袋数量	条	600
10	滤袋材质	/	PPS+PTFE
11	滤袋滤料单位重量	g/m ²	550
12	脉冲阀数量	只	40
3	除尘器灰斗数及容积	↑/m³	4/8

②除尘技术可行性

根据《污染源源强核算技术指南锅炉》(HJ991-2018)中附录 B, 袋式除尘器的除尘效率为 99.50%~99.99%,同时按照第二次全国污染源普查产排污核算系数手册中锅炉产排污量核算系数手册,燃煤循环流化床炉的袋式除尘技术的颗粒物去除效率为 99.6%,因此本项目采用多管除尘+袋式除尘的综合除尘效率取值 99.9%可信,石灰石-石膏湿法脱硫工艺协同脱除颗粒物效率大于 50%时,可满足综合去除效率为 99.95%以上的要求。

根据废气源强计算,锅炉燃烧过程产生的烟尘经"多管除尘+袋式除尘"联合石灰石-石膏湿法脱硫工艺协同处理后排放浓度为 1.511mg/m³,排放浓度低于《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号)的颗粒物 10mg/m³的要求,其处理措施可行。

考虑到项目使用的混合燃料中含水率较高,锅炉烟气中水分含量过高易造成布袋除尘器堵塞,影响除尘效率。针对该点问题,建设单位在必选除尘方案时优先选用抗结露处理滤料(例如 PTFE 覆膜滤料)作为除尘器滤袋,该类型滤料可以提高对含水粉尘的剥离性,减少结露的影响。同时在除尘器进风管上采取加热措施,将烟气温度与露点温度保持相等,还通过降低烟气风速、提高滤袋清灰效率等方式来避免粉尘吸湿后粘附在滤袋上。

3、脱硫措施可行性

项目采用石灰石-石膏湿法脱硫工艺,该系统不设 GGH 和烟气旁路,主要由浆液制备与供应系统、烟气系统、SO₂ 吸收与氧化系统、脱硫塔后烟气二次除尘除水系统、石膏脱水系统、工艺水系统、浆液排放回收及事故系统、废水处理系统组成,此外还有压缩空气系统等必要的辅助系统。

①炉内脱硫装置

炉内脱硫剂采用石灰石粉,石灰石粉≥250 目,过筛率 95%,外购成品石灰石粉、厂内制浆。炉内脱硫装置由石灰石粉仓、仓顶除尘器、石灰石粉输送风机、缓冲仓、加速

室、给料阀、喷射器、气化风及加热装置、耐磨输送管道等组成。

②炉外脱硫装置

炉外脱硫采用石灰石-石膏湿法脱硫工艺。脱硫塔采用一炉一塔,石灰浆液制备、石膏脱水、事故排放及返回等公用设施按两台炉共用一套,公用部分的烟气处理能力按两台锅炉最大烟气量考虑。吸收塔采用逆流喷淋空塔,脱硫后净烟气由独立共用烟囱排放。脱硫产生的废水送入厂区废水处理系统统一处理。

整个脱硫系统主要由烟气系统、SO₂ 吸收系统、事故池地池系统、电气系统、仪表系统、石灰浆液储存制备系统、工艺水洗系统、在线监测 CEMS 系统等组成。

烟气系统:烟气系统包括自除尘器出口起至脱硫塔入口止的干烟气烟道和自脱硫塔出口起至烟囱入口止的净烟气(湿烟气)烟道(不含引风机)。脱硫烟气系统为锅炉烟气系统的延伸部分,烟道留有适当的取样接口、试验接口和人孔。

<u>SO2</u> 吸收系统: 吸收塔按适宜的液气比设计,吸收塔材质碳钢。塔内安装有 3 层喷淋层和除雾器及冲洗层等内构件。喷嘴采用碳化硅烟斗式喷嘴,喷淋管道采用 FRP 玻璃钢管道,喷嘴布置方式为均匀布置,喷淋层交错布置,保证液滴的均匀分布,改善气液接触条件,提高脱硫效率。吸收塔上部设置除雾层,除雾器设有冲洗装置,冲洗装置定时冲洗除雾器。

<u>地池系统</u>: 地池用于存放脱硫区域所有的管道、设备冲洗水、设备冷却水、及溢流排空浆液等。包括地池(地下式)和地池泵。

石灰浆液储存及输送系统: 石灰石由厂外运输至脱硫界区,设置一个石灰浆液罐,浆液罐容积不低于1个班次(12h)的容量,石灰浆液罐上部安装立式搅拌器,不断的搅拌浆液,防止沉淀。

工艺水系统: 脱硫用水点包括吸收塔因蒸发而减少的水、除雾器冲洗用水及各泵与管道的冲洗水与冷却水等用水点、浆液制备等。

在线监测 CEMS 系统: 脱硫系统采用就地/远程切换控制的方式,实现 DCS 监视与控制,并采用与主机 DCS 系统相同的软、硬件设备。烟气连续检测 CEMS 系统的监测数据送至脱硫系统 DCS,采用有线或无线方式与环保部门进行通讯接口,并需满足环保部门要求。

③脱硫技术可行性

根据《污染源源强核算技术指南 锅炉》(HJ991-2018)中附录 B, 石灰石/石灰-

石膏湿法的脱硫效率为90%~99%,因此本项目采取石灰石/石灰-石膏湿法的脱硫效率取值95%可信。

根据废气源强计算,锅炉燃烧过程产生的二氧化硫经"石灰石/石灰-石膏湿法脱硫"工艺处理后排放浓度为 7.953mg/m³,排放浓度低于《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1 号)的二氧化硫 35mg/m³ 的要求,其处理措施可行。

4、汞及其化合物处理可行性

与常规污染物 SO₂和 NOx 相比, Hg 等痕量元素在燃煤烟气中的浓度不高,但由于煤炭的大规模利用和痕量元素的积累效应,他们对环境也存在一定的危害。常规大气污染物控制装置对汞有脱除效果的主要为布袋除尘器、静电除尘器和湿法脱硫装置。拟建项目采用布袋除尘器和石灰石-石膏湿法脱硫装置。其对汞具有一定的协同脱除效果。

拟建项目采用循环流化床锅炉低氮燃烧+SNCR-SCR 脱硝+旋风除尘+布袋除尘+石灰石-石膏湿法脱硫,SNCR-SCR 脱硝、除尘器、石灰石-石膏湿法脱硫装置均对汞有协同处置作用。根据项目废气源强计算,锅炉烟气中汞及其化合物的采用烟气脱硝+除尘+湿法烟气脱硫的组合技术进行协同控制去除,总去除效率按70%计,锅炉汞排放浓度可控制在0.0002mg/m³,满足《锅炉大气污染物排放标准》(GB13271-2014)表3中燃煤锅炉大气污染物特别排放限值要求(0.05mg/m³)。

5、锅炉烟囱高度合理性

本项目锅炉废气经"低氮燃烧+SNCR/SCR 耦合式脱硝+多管除尘-布袋除尘+石灰石-石膏湿法脱硫"后共用一根 45 米烟囱外排。根据《锅炉大气污染物排放标准》(GB13271-2014),每个新建燃煤锅炉房只能设一根烟囱,烟囱高度应根据锅炉房装机总容量确定,根据下表确定项目锅炉房装机总容量 40t/h≥20t/h,烟囱最低允许高度为45m。新建锅炉房烟囱周边半径 200m 距离内有建筑物时,其烟囱应高出最高建筑物 3m以上。

农 /:1-3 //////////// // // // // // // // // /							
锅炉房装机总容量	MW	< 0.7	0.7~<1.4	1.4~<2.8	2.8~7<	7~<14	≥14
	t/h	<1	1~<2	2~<4	4~<10	10~<20	≥20
烟囱最低允许高度	m	20	25	30	35	40	45

本项目锅炉设置一根 45 米烟囱, 符合《锅炉大气污染物排放标准》(GB13271-2014)标准要求, 周边 200m 范围内最高建筑物不超出 45 米。

7.1.3 粉尘防治措施可行性

针对本项目配套工程如燃料储运系统、除灰渣系统、石灰系统等产生的粉尘均应采取有效的治理措施,具体防治措施如下:

1、燃料装卸、储运与输送系统降尘措施

- (1) 厂外汽运车辆应采用封闭或覆盖等抑尘措施,在进出厂及煤棚/生物质料棚时 先进行车外身清洗,必须加强对运煤汽车的管理,严格执行运行管理制度。同时以防止 在运输途中散落产生扬尘,禁止在大风天气进行装卸作业,避免污染环境。
- (2) 煤棚/生物质料棚设置覆盖整个料堆表面的喷淋设施,喷淋设施应满足以下规定:
- ①应选用旋转可调的自动喷头,其设置应满足堆场覆盖和料堆高度的要求,供水压力应满足喷头射程的要求。
- ②堆场表面含水率应控制在 10%以上,不得太低。每次喷水强度应达到 2.0L/m²以上,每天洒水不少于 5 次。
- ③企业应根据堆场布置、范围等具体情况,委托设计单位合理进行喷淋系统设计,确保喷淋系统覆盖整个堆场范围,保证喷淋质量。
- (3)燃料从料棚输送至炉前料仓采用全密闭的输料栈桥,并在破碎楼、各转运站的扬尘点、原煤斗等处设置袋式除尘器装置,在上下级输料皮带机落差较大处安装缓冲锁气器,以减少煤流的冲击和煤尘飞扬。
- (4)输料系统各带式输送机栈桥走廊均敷设水力清扫管道,每隔 20m 左右安装 1 个栈桥冲洗器,水力清扫还覆盖输料皮带层、转运站、破碎楼各层。

2、灰仓降尘措施

- ①灰库的库顶上各设一台压力真空释放阀和一台袋式除尘器;
- ②气力除灰系统采用钢管道输送,密封性好。除灰管道采用厚壁钢管、弯头采用耐磨弯头,避免磨穿引起泄漏,并尽量用焊接方式连接,减少用法兰连接时可能出现的泄漏。
- ③干灰卸料时,通过灰库下的干灰散装机伸缩头与密封灰罐车接口严密结合,避免 冒漏灰。
 - ④灰库、除尘器下设置地面清扫及排污设施。
 - ⑤为减少沿途可能的污染,应选用密封性能较好的运灰车辆,避免沿途漏灰;对出

灰场的机具及车辆进行冲洗,避免车辆带灰。

⑥综合利用干灰采用密封罐车运输,建议制定灰渣接卸的严格操作规程,加强管理,健全文明生产制度并落实,尽可能减少粉尘事故的无组织排放量。

3、石灰石粉仓降尘措施

- ①石灰石粉采用罐车运输,石灰石罐顶部设有袋式除尘器,减少粉尘无组织排放对环境的影响。
- ②脱硫石膏运输车辆采用密闭罐车,以防止在运输途中散落产生扬尘,禁止在大风 天气进行装卸作业,避免污染环境。
- ③生产过程所有物料堆放禁止露天堆放,加强物料的洒水抑尘,厂区内道路定期清扫、洒水。

7.1.4 小结

对照《排污许可证申请与核发技术规范 锅炉》(HJ953-2018),本项目选用的废气治理措施与 HJ953-2018 规定可行技术符合性分析见下表 7.1-4。

表 7.1-4 与 HJ953-2018 规定可行技术符合性

序号	废气类别	HJ953-2018	定可行技术	本项目废气治理措施	符合性		
– ,	、 烟气污染防治可行技术						
燃料类型		燃煤	燃生物质	燃煤、燃生物质	1		
1.1	炉型	层燃炉、流化床炉、 室燃炉	层燃炉、流化床炉、 室燃炉	循环流化床炉	符合		
1.2	颗粒物	袋式除尘技术、电除 尘技术、电袋复合除 尘技术、湿式电除尘 技术	旋风除尘和袋式除 尘组合技术	采用多管除尘和袋式除 尘组合技术	符合		
1.3	二氧化硫	燃用低硫煤、干法/半 干法脱硫技术、湿法 脱硫技术	/	采用湿法脱硫技术	符合		
1.4	氮氧化物	低氮燃烧+SNCR脱硝拉 +SCR脱硝技术、低氮燃 合)脱硝技术、SNCR 技术、SNCR-SCF	燃烧+(SNCR-SCR联 脱硝技术、SCR脱硝	采用低氮燃烧+ (SNCR-SCR联合)脱硝 技术	符合		
二、	无组织排放	控制要求					
2.1	贮存系统	①储煤场四周至少应采墙、覆盖等形式的防尘。 度不低于堆存物料高度 ②储罐区应合理地选择 ③灰场、渣场应及时覆 灰仓的应采用密闭措施	措施,防风抑尘网高的1.1倍。 储罐类型。 盖并定期洒水。设有	①煤棚、生物质料棚采取 喷淋等抑尘措施。 ②氨水等储罐区设置了 合理的储罐类型。 ③飞灰采用密闭式料仓 贮存,并设置了布袋除尘	符合		

		防尘措施。设有渣库的应采用挡尘卷帘、围 挡等形式的防尘措施。 ④无独立包装脱硫剂粉应使用罐车运输、密 闭储存。	器等防尘措施。 ④石灰石粉采用罐车运输,粉仓顶部设有袋式除 尘器;脱硫石膏运输车辆 采用密闭罐车。	
2.2	输送系统	储煤场卸煤过程应采取喷淋等抑尘措施。煤 炭输运过程中使用皮带机输送的应在输煤 栈桥等封闭环境中进行,并对落煤点采用喷 淋等防尘措施。粉煤灰应使用气力输送、罐 车运输等方式。	①卸料过程采取喷淋等 抑尘措施。 ②燃料输运过程中使用 皮带机输送,且设置输煤 栈桥,在炉前料仓设置布 袋除尘器等防尘措施。	符合
2.3	制备系统	①由于工艺要求设置煤炭筛分、破碎工艺的,筛分和破碎应在封闭厂房中进行。 ②石灰石制粉应在封闭厂房中进行。	①煤炭的筛分、破碎工艺 均在封闭破碎楼中进行。 ②石灰石直接购买石灰 石粉,不在场内进行石灰 石制粉加工。	符合
2.4	厂区环境	厂区裸露地面应采用绿化等抑尘措施,道路 应进行硬化并定期清扫、洒水,物料进出口 设置车辆冲洗设施。	厂区四周计划种植绿植, 厂区地面进行水泥硬化 处理,并定期进行喷洒水 降尘。物料运输车辆进出 厂需按要求进行车辆冲 洗。	符合

综上分析,本次工程采取"低氮燃烧+SNCR/SCR 耦合式脱硝+多管除尘-布袋除尘+石灰石-石膏湿法脱硫"符合《排污许可证申请与核发技术规范 锅炉》(HJ953-2018)锅炉烟气污染防治可行技术,烟气中可满足颗粒物≤10mg/m³,二氧化硫≤35mg/m³、氮氧化物≤50mg/m³的超低排放的要求。本工程采取的相关无组织排放控制措施均符合《排污许可证申请与核发技术规范 锅炉》(HJ953-2018)中可行技术要求,废气治理措施可行。

7.2 水污染防治措施及其可行性

7.2.1 雨、污水收集方式

厂区排水系统采用雨污分流,清污分流。雨水经厂区内雨水管网收集后排入市政雨水管网;项目锅炉废水、脱硫废水收集后全部回用于调湿灰用水不外排,化水系统含盐废水收集后回用于燃料输送系统冲洗用水,燃料输送系统冲洗废水再收集回用于厂区降尘、绿化灌溉及地面冲洗,不外排;项目外排污水主要为职工生活污水和生产废水(锅炉定期冲洗废水、冷却系统排污水和一体化净水设施废水),其中生活污水经厂区化粪池处理达标后排入市政污水管网,锅炉定期冲洗废水、冷却系统排污水和一体化净水设

施废水作为生产废水收集至沉淀池处理达标后排入市政污水管网,项目废水最终均排入马铺污水处理厂处理。

7.2.2 生活污水处理工艺可行性分析

项目生活污水采用化粪池进行处理,属于《排污许可证申请与核发技术规范 锅炉》(HJ953-2018)中明确规定的可行技术。根据《室外排水设计规范》规定化粪池的停留时间为 12~24h,最小污水停留时间应不小于 12h,项目运营期外排生活污水量 1663.34t/a(4.995t/d,24h/d),计算得出项目生活污水 12h 产生量约 0.208m³,厂区规划建设一座30m³ 三级化粪池,可满足项目生活污水量处理需求。

根据项目废水源强分析可知,项目生活污水经化粪池处理后各项污染物排放浓度分别为 COD: 289mg/L、BOD₅: 178mg/L、SS: 106mg/L、NH₃-N: 31mg/L,出水浓度符合《污水综合排放标准》(GB8978-1996)三级标准,氨氮执行《污水排入城镇下水道水质标准》(CJ343-2010)B等级排放标准,同时满足马铺污水处理厂进水水质要求,因此,化粪池对生活污水污染物的处理效率可满足要求,处理工艺可行。

7.2.3 生产废水处理工艺可行性分析

1、处理工艺

(1) 锅炉排污水

锅炉排污水主要污染物为 COD、SS,建设单位将其收集至循环水池后全部回用于调湿灰用水,不外排。锅炉使用一段时间后定期进行冲洗,会产生少量冲洗废水,同一体化净水设施废水一同收集后排入厂区沉淀池处理,最后达标排放。

(2) 化水系统排水

本项目锅炉补给水由化水系统提供,化水系统将原水制作出除盐水,除盐水制取过程涉及反渗透装置,将产生软化处理废水。化水系统产生的含盐废水主要含有 COD、SS 和盐类,水质简单,收集进入循环水池简单沉淀后即可回用于生产,全部回用于输送系统冲洗,不外排。

(3) 脱硫系统废水

项目脱硫系统废水呈微酸性,含有固体悬浮物、高浓度盐类及和重金属,采用物理化学处理方法,可以通过调整 pH 值,去除废水中悬浮物,即在脱硫废水进入中和箱的同时加入一定量的 5%的石灰乳溶液,将废水的 pH 提高至 9.0 以上,使大多数重金属离子在碱性的环境中生成难溶的氢氧化物沉淀。废水得到澄清、净化处理后的脱硫废水达

到《燃煤电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T997-2020)标准后回用于调湿灰用水,不外排。拟建设一座 1t/h 处理规模的脱硫系统废水处理池,项目脱硫废水产生量 0.7t/h,处理规模可满足需求。

(4) 输煤系统设备冲洗废水

本项目计划于厂区内建设一个煤泥废水沉淀池(容积 5m³),用于收集和处理输送系统冲洗产生的废水,废水量 9t。冲洗废水经管沟收集进入沉淀池池中,经混凝沉淀后的上层清水用加压泵输送至循环水池,回用于厂区降尘和绿化灌溉用水。

- (5) 一体化净水设施及冷却系统调节池定期排污水
- 一体化净水设施及冷却系统调节池定期排污水主要污染物为 COD、SS, 收集进入 沉淀池处理后外排入市政污水管网, 进入马铺污水处理厂处理。

本项目生产废水处理工艺: 废水→调节沉淀池(20m³)→絮凝箱→澄清浓缩器→最终中和池→外排。

- ①中和:废水处理的第一道工序就是中和,即加入酸、碱溶液调节废水中 pH 值至中性。
- ②沉淀:废水进入沉淀池中,静置过程中废水中较大重量的物质自然降落至池底,洁净水则分离于上层。
- ③絮凝:废水中的悬浮物含量较大其中主要含有石膏颗粒、煤炭颗粒和生物质屑等。进一步采用絮凝方法,根据水质情况往废水中加入 PAM、PAC 絮凝剂,使胶体颗粒和悬浮颗粒发生凝聚和聚集,从液相中分离出来,是一种降低悬浮物的有效方法,使废水中的细小颗粒凝聚成大颗粒而沉积下来。
- ④浓缩澄清: 絮凝后的废水从沉淀池溢流进入装有搅拌器的澄清池中。絮凝物沉积 在底部浓缩成污泥,上部则为处理出水。大部分污泥经污泥泵排到板框压滤机。上部出 水溢流到中和池,中和池设置了监测出水 pH 和浊度的在线监测仪表,如果 pH 和浊度 达到排水设计标准,则通过出水泵排入污水井,否则将加酸调节 pH 直到合格为止。

(6) 初期雨水

项目在煤场四周设置集水沟,将降雨初期(前 15min)的雨水截流后送入初期雨水 收集池,初期雨水池设计容积为 77m³,收集后的初期雨水经沉淀后进入循环水池静置, 15 分钟后的雨水通过厂区雨水管网外排。

2、处理工艺可行性

根据《排污许可证申请与核发技术规范 锅炉》(HJ953-2018),本项目废水污染防治技术可行,详见表 7.2-1。项目废水采取的治理工艺属于 HJ953-2018 废水污染防治可行技术。

废水排放去向	废水类别		污染防治设施名称及 工艺	本项目废水治理措 施	是否可 行技术
进入工业园区集中 污水处理厂、市政 污水处理厂、其他 排污单位污水处理	生产废水	一体化净水设施 废水 锅炉冲洗废水 化水系统废水	一级处理(中和、隔油、 氧化、沉淀等)+二级 处理(絮凝/混凝、澄清、 气浮、浓缩、过滤等)	中和+絮凝+沉淀+ 澄清	是
厂等		初期雨水	隔油+混凝+气浮等组 合处理技术	混凝沉淀	是

表 7.2-1 外排废水治理工艺与 HJ953-2018 技术可行性对比

另外,项目锅炉排污水、脱硫系统废水、输送系统冲洗废水以及化水系统废水全部 回用不外排,回用技术参考《火电厂污染防治可行技术指南》(HJ2301-2017)中提出 的废水处理与回用可行技术路线。由于废水种类较多,水质差异大,大多数废水需要处理回用,对照《火电厂污染防治可行技术指南》(HJ2301-2017)中提出的废水处理与 回用可行技术路线,项目回用废水处理工艺是可行的。

1 /2	一十两次洗田之			, ,,,,		, <u> </u>
类	主要污染因子	可行技术	去向或回用途径	采用技术	去向或回用途径	符合
锅炉排 污水	COD, SS	/	冷却水系统或化 水系统	循环水池 (沉淀)	水量小,回用于 调湿灰用水	是
化水系统废水	COD、SS、盐 类	石灰处理、絮 凝、沉淀、超 滤、反渗透	煤场喷洒、输煤 皮带冲洗、厂区 冲洗	循环水池(沉淀)	回用于输送系统冲洗用水	是
脱硫废水	pH、SS、COD、 BOD ₅ 、氨氮、 挥发酚、石油 类、总磷、重 金属等	石灰处理、混 凝、澄清、中 和	干灰调湿、灰场 喷淋、冲渣水、 冲灰水或达标排 放	中和+混 凝沉淀	回用于调湿灰用 水	是
输送系					回用于厂区降	

重复利用

表 7.2-2 回用废水治理工艺与 HJ2301-2017 回用技术可行性对比

本项目废水治理措施

尘、绿化灌溉及

地面冲洗

循环水池

(沉淀)

是否

是

混凝、澄清、

锅炉

统冲洗

废水

COD, SS

7.3 地下水污染防治措施及其可行性

7.3.1 地下水环境污染防治原则

针对项目可能发生的地下水污染,地下水污染防治措施按照"源头控制、分区防治、污染监控、应急响应"相结合的原则,从污染物的产生、入渗、扩散、应急响应全阶段进行控制。工程生产运行过程中要建立健全地下水保护与污染防治的措施与方法;必须采取必要监测制度,一旦发现地下水遭受污染,就应及时采取措施,防微杜渐;尽量减少污染物进入地下含水层的机会和数量。

源头控制:主要包括在工艺、管道、设备、污水产生及储存构筑物采取相应措施,防止和降低污染物跑、冒、滴、漏,将污染物泄漏的环境风险降到最低程度;管线敷设尽量采用"可视化"原则,即管道尽可能地上敷设,做到污染物"早发现、早处理",减少由于埋地管道泄漏而造成的地下水污染。

分区防治: 以特殊装置区为主,一般生产区为辅;事故易发区为主,一般区为辅。

污染监控体系:实施覆盖生产区的地下水污染监控系统,包括建立完善的监测制度、配备先进的检测仪器和设备、科学、合理设置地下水污染监控井,及时发现污染、及时控制。

应急响应:包括一旦发现地下水污染事故,立即启动应急预案、采取应急措施控制地下水污染,并使污染得到治理。

7.3.2 厂区地下水污染防治措施

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)进行防渗区域划分。 危险废物贮存间、物料或污染物泄漏后不能及时发现和处理的区域或部分均划分为 重点防渗区;物料或污染物泄漏后可及时发现和处理的区域或部分划分为一般污染 防渗区;重点和一般防渗区以外的区域为简单防渗区。针对不同的污染防渗分区提 出相应的防渗要求。

不同污染防渗分区的相应要求见表 7.3-1。厂区具体防渗区域见图 7.3-1。

表 7.3-1 厂区污染防渗分区划分表

防渗分区	厂内分区	防渗技术要求
重点防渗区	危废贮存间、初期雨水池、循 环水池、沉淀池、脱硫废水处 理池、储油罐、氨水罐区	①根据《环境影响评价技术导则地下水环境》 (HJ610-2016)要求,重点防治区的防渗性能应等效黏土防渗层≥6.0m,渗透系数≤1.0×10 ⁻⁷ cm/s。 ②管线敷设尽量采用"可视化"原则,即管道尽可能地上敷设,做到泄漏污染物"早发现、早处理";对于地埋式污水收集管道均应采取防腐和防渗处理。 ③初期雨水池、循环水池、沉淀池以及脱硫废水处理池体应落实防渗涂层,池体材料选用耐腐蚀材质,池体四周设置围堰区。 ④危险废物贮存间水平防渗技术要求按照《危险废物贮存污染控制标准》(GB18597-2023)等相关标准、法律法规的要求执行,基础必须防渗,防渗层为至少1m 厚粘土层(渗透系数≤10 ⁻⁷ cm/s),或2mm 厚高密度聚乙烯,或至少2mm 厚的其他人工材料,渗透系数≤10 ⁻¹⁰ cm/s。 ⑤除油罐四周设置围堰或底部加垫防渗漏托盘。 ⑥氨水罐区地面进行硬化防渗,四周设置高度不低于1m的围堰,围堰内布设废液收集沟、废液收集
一般防渗区	事故应急池、一次水池、锅炉 主厂房、煤棚、生物质料棚、 炉前料仓、灰库、渣仓、石灰 石粉仓、化水车间、破碎楼、 空压机房、脱硫综合楼	池,罐体安装输、送料监控阀门。 根据《环境影响评价技术导则 地下水环境》 (HJ610-2016),一般防渗区的防渗性能等效黏土 防渗层≥1.5m,渗透系数≤1.0×10 ⁻⁷ cm/s。一般工业 固体废物暂存场一般防渗区应按照《一般工业固体 废物贮存和填埋污染控制标准》(GB18599-2020)Ⅱ 类场进行设计:"操作条件下的单位面积渗透量不 大于厚度为1.5m,渗透系数≤10 ⁻⁷ cm/s。防渗层的 渗透量,防渗能力与《一般工业固体废物贮存和填 埋污染控制标准》(GB18599-2020)第5.3条等效。
简单防渗区	除一般污染防治区及重点污染 防治区外的区域	一般地面硬化

图 7.3-1 厂区防渗分区图

7.4 土壤污染防治措施及其可行性

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018),厂区应采取如下土壤污染控制措施:

1、源头控制措施

控制项目污染物的排放。大力推广闭路循环、清洁工艺,以减少污染物;控制污染物排放的数量和浓度,使之符合排放标准和总量控制要求。

2、过程防控措施

- (1)加强厂区的绿化工作,尽量选择适宜当地环境且对大气污染物具有较强吸附能力的植物,从而控制污染物通过大气沉降影响土壤环境。
- (2) 厂区内严格按照防渗分区及防渗要求,对各构筑物根据防渗分区采取相应的 防渗措施。设置与事故应急池相连的导排系统,防止液体物料泄漏,导致漫流下渗污染 地下水。
 - (3) 厂区内设有事故应急池,事故状态下产生的事故废水暂贮存于事故应急池内。
- (4)建立土壤污染隐患排查治理制度,定期对重点区域、重点设施开展隐患排查。 发现污染隐患的制定整改方案,及时采取技术、管理措施消除隐患。隐患排查、治理情况如实记录并建立档案。重点区域包括涉及有毒有害物质的生产区,原材料及固体废物的堆存区、储放区和转运区等;重点设施包括涉及有毒有害物质的器具以及污染治理设施等。
- (5)按照相关技术规范要求,委托第三方定期开展土壤监测,重点监测存在污染 隐患的区域和设施周边的土壤、地下水,并按照规定公开相关信息。
- (6)在隐患排查、监测等活动中发现项目用地土壤存在污染迹象的,应当排查污染源,查明污染原因,采取措施防止新增污染,并参照污染地块土壤环境管理有关规定及时开展土壤环境调查与风险评估,根据调查与风险评估结果采取风险管控或者治理与修复等措施。

本项目采取了严格的防渗措施,正常工况下不会产生污染物下渗影响;非正常工况下,重点防渗区防渗层老化破裂将会产生土壤污染风险,故建设单位应加强环境管理,增加对厂区尤其是重点防渗区的巡检次数,定期对地下水进行跟踪监测,及时发现防渗层老化破裂问题、及时重新铺设或更换防渗层,减轻对土壤环境产生不利影响。

7.5 噪声污染防治措施及其可行性

本项目产生高噪声的设备主要有碎煤设备、锅炉排汽(偶发噪声)、风机和各种水泵等,其高噪声设备声源值在 75~95dB 之间。有效地防治本项目噪声污染首先是从声源上进行控制,其次应采取有效的隔声、消声、吸声等控制措施对噪声进行有效控制,噪声防治措施与建议如下:

- (1) 有效的措施是在噪声源上控制,在订购设备时,应尽量选用低噪设备,国家 已将噪声作为产品出厂检验的硬性指标,而对于必不可少的高噪设备在订货时应同时定 其配套降噪措施。
- (2)在进行厂区平面布局设计时,统筹规划、合理布局,使高噪设备相对集中在厂区中间,并与办公区、员工休息区之间隔开一定距离,在一定程度上有利于设备噪声的衰减。
- (3) 厂房隔声。要求碎煤设备、空压机、脱硫系统氧化风机、各类泵均布置在专用厂房构筑物内。厂房建筑设计中,对噪声比较大的车间的门窗选用吸声性能较好的材料,锅炉房等声源集中的车间要进行降噪设计,采用隔声门窗、吸声材料、用密封条密封防噪。这些措施的隔声效果一般可达到 20dB 以上。在强噪声源厂房内设置值班隔声室,要装双层门窗,墙面、屋顶要铺设吸声材料等;这样可方便操作人员在工作间小憩,以尽量减少接受强噪声危害的时间,同时要加强个人防护措施。
- (4)对碎煤设备、脱硫系统氧化风机、软化水处理水泵等加装隔声罩。一次风机、 二次风机、引风机、脱硫系统氧化风机等设备增加管道外壳阻尼。
- (5)对于风机、水泵、空压机等设备在不影响其检修散热的条件下,选用相应的吸声、隔声材料做成消声器、隔声罩等,同时设施底部采取减振措施;加强各类泵的减振降噪措施,冷却塔安装导流消声片及消声垫。
- (6)针对锅炉非正常排汽,应在锅炉非正常排汽口安装节流降压消声器等设施,保证安装消声器后排汽偶发噪声不超过100dB(A)限值,此外运行中尽量减少排汽次数,并尽可能避免在夜间排汽。
- (7)项目建成投运前,锅炉过热器及其蒸汽管道系统需进行吹扫,吹管噪声源强大,影响范围大,时间长。因此,为减轻吹管期间的噪声影响,在吹管期间应采取配置消音装置等措施,吹管时间应安排在昼间,而且吹管前向厂区周边的居民、单位等进行细致的通报,说明吹管时间、可能的噪声源强度等,以最大限度地降低噪声影响。

- (8) 烟道设计做到布置合理,流通顺畅,减少空气动力噪声。
- (9)减振措施:对于高噪声的设备如锅炉风机、碎煤设备等基础做减振处理;带式输送机固定受料点处采用缓冲辊组;在落煤管、落煤斗煤流冲击较大的部位,采用抗冲击陶瓷复合衬板,提高耐磨性能、降低噪声;设备与地面或楼板连接处应采用隔振基础或弹性软连接的减振装置,减少振动和设备噪声传播。各种泵的进、出口均采用减振软接头,以减少泵的振动和噪声经管道传出。
- (10) 切实维持各类设备处于良好的运行状态,避免设备运转不正常时造成厂界噪声超标。加强操作人员个人保护,减少噪声对工作人员的伤害。

经项目噪声预测,运营期厂界噪声贡献值可达《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的3类标准限值要求,因此本项目重点噪声源所采取的隔声、减振、 消声等降噪控制措施将沿用这些技术可靠、经济合理并且效果明显的技术方法,噪声控 制效果是有效的。

7.6 固体废物暂存及处置可行性

7.6.1 固体废物污染防治措施

固体废物是一种积累性的污染物,综合利用固体废物,不仅是环保的需要,也是废物资源化的要求。项目严格执行《中华人民共和国固体废物污染环境防治法》(2020年9月1日起施行)的有关规定,产生工业固体废物的单位应当建立、健全污染环境防治责任制度,采取防治工业固体废物污染环境的措施。

固体废物的收集应分类收集方式,即一般工业固体废物、危险废物、生活垃圾 应分别收集处置。

1、一般固体废物、生活垃圾处置措施

项目一般工业固体废物按照《一般工业固体废物贮存和填埋污染控制标准》 (GB18599-2020)要求,炉渣、飞灰、脱硫石膏委托有主体资格和技术能力的单位 处置,沉淀池污泥脱水晾干后掺入锅炉燃烧,废弃离子交换树脂和废滤袋换下后交 由厂商回收。生活垃圾经分类收集于垃圾桶,定期由环卫部门清运。

2、危险废物处置措施

厂区内产生的危险废物全部委托有危废处置资质单位外运处置,厂区内产生的各类危险废物由合作企业根据协议进行收运、处置,符合危险废物委托处置要求。

7.6.2 固体废物临时贮存场所污染防治措施

1、临时贮存位置

一般工业固体废物暂存场所建设可满足《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求。

渣仓:项目厂区内规划1个渣仓,为密封圆筒仓,用于存放炉渣,设计容积约100m³,最长可暂存3.5 天炉渣储存量,位于锅炉东侧。

灰库:项目厂区内规划 1 个灰库,为密封圆筒仓,用于存放锅炉飞灰,设计容积约 200m³,最长可暂存 3.5 天飞灰储存量,位于锅炉袋式除尘器东侧。

石膏贮存间: 脱硫副产品石膏浆液通过石膏排出泵送入石膏水力旋流站浓缩,浓缩后的石膏浆液进入真空皮带脱水机,脱水后的石膏送入脱硫处理区的石膏库内进行临时存储,其容积按正常工况运行时 18 天的石膏量进行设计。

污泥暂存区:根据沉淀池污泥悬浮物处理情况,污泥含水率以60%计,主要成分为煤炭,在煤仓脱水晾干后暂存于污泥暂存区,后期掺入锅炉焚烧。

2、危险废物收集环节防治措施

厂区内危险废物收集包括两个方面:一是在危险废物产生节点将危险废物集中 到适当的包装容器中或运输车辆上的活动;二是将已包装或装到运输车辆上的危险 废物集中到危险废物临时贮存设施的内部转运。

为有效地防止危险废物的二次污染,对危险废物的收集和管理,公司采用以下措施:

- (1)根据危险废物产生的工艺特征、排放周期、危险废物特性、废物管理计划等因素制定收集计划。收集计划应包括收集任务概述、收集目标及原则、危险废物特性评估、危险废物收集量估算、收集作业范围和方法、收集设备与包装容器、安全生产与个人防护、工程防护与事故应急、进度安排与组织管理等。
- (2) 危险废物的收集应制定详细的操作规程,内容至少应包括适用范围、操作程序和方法、专用设备和工具、转移和交接、安全保障和应急防护等。
- (3)危险废物收集和转运作业人员根据工作需要配备必要的个人防护装备,如手套、防护镜、防护服、防毒面具或口罩等。
- (4) 在危险废物的收集和转运过程中,采取相应的安全防护和污染防治措施,包括防爆、防火、防中毒、防感染、防泄漏、防飞扬、防雨或其他防止污染环境的

措施。

- (5)危险废物收集时根据危险废物的种类、数量、危险特性、物理形态、运输要求等因素确定包装形式。
 - (6) 危险废物的收集、内部转运作业按规范操作。
- (7) 收集不具备运输包装条件的危险废物时,且危险特性不会对环境和操作人员造成重大危害,可在临时包装后进行暂时贮存,但正式运输前应按本标准要求进行包装。

3、危险废物标识设置要求

危险废物标识应按《危险废物识别标志设置技术规范》(HJ1276-2022)设置。

(1) 总体要求

危险废物识别标志的设置应具有足够的警示性,以提醒相关人员在从事收集、 贮存、利用、处置危险废物经营活动时注意防范危险废物的环境风险。

危险废物识别标志应设置在醒目的位置,避免被其他固定物体遮挡,并与周边的环境特点相协调。

危险废物识别标志与其他标志宜保持视觉上的分离。危险废物识别标志与其他 标志相近设置时,宜确保危险废物识别标志在视觉上的识别和信息的读取不受其他 标志的影响。

同一场所内,同一种类危险废物识别标志的尺寸、设置位置、设置方式和设置 高度等宜保持一致。危险废物识别标志的设置除应满足本标准的要求外,还应执行 国家安全生产、消防等有关法律法规和标准的要求。

(2) 危险废物标签

危险废物标签应以醒目的字样标注"危险废物"。危险废物标签应包含废物名称、废物类别、废物代码、废物形态、危险特性、主要成分、有害成分、注意事项、产生/收集单位名称、联系人、联系方式、产生日期、废物重量和备注。

危险废物标签宜设置危险废物数字识别码和二维码。标签的设置要求如下:

危险废物产生单位或收集单位在盛装危险废物时,宜根据容器或包装物的容积的要求设置合适的标签,并标准的要求填写完整。危险废物标签中的二维码部分,可与标签一同制作,也可以单独制作后固定于危险废物标签相应位置。危险废物标签的设置位置应明显可见且易读,不应被容器、包装物自身的任何部分或其他标签

遮挡。

(3) 危险废物贮存分区标志

①内容要求

危险废物贮存分区标志应以醒目的方式标注"危险废物贮存分区标志"字样。危险废物贮存分区标志应包含但不限于设施内部所有贮存分区的平面分布、各分区存放的危险废物信息、本贮存分区的具体位置、环境应急物资所在位置以及进出口位置和方向。危险废物贮存单位可根据自身贮存设施建设情况,在危险废物贮存分区标志中添加收集池、导流沟和通道等信息。危险废物贮存分区标志的信息应随着设施内废物贮存情况的变化及时调整。

②危险废物贮存分区标志的设置要求

危险废物贮存分区的划分应满足 GB18597 中的有关规定。宜在危险废物贮存设施内的每一个贮存分区处设置危险废物贮存分区标志。危险废物贮存分区标志宜设置在该贮存分区前的通道位置或墙壁、栏杆等易于观察的位置。宜根据危险废物贮存分区标志的设置位置和观察距离按照标准要求设置相应的标志。危险废物贮存分区标志可采用附着式(如钉挂、粘贴等)、悬挂式和柱式(固定于标志杆或支架等物体上)等固定形式。危险废物贮存分区标志中各贮存分区存放的危险废物种类信息可采用卡槽式或附着式(如钉挂、粘贴等)固定方式。

4、危险废物贮存环节要求

建设单位设置专人负责危险废物的管理,各种废弃物的储存容器都有很好的密封性。厂区危险废物贮存间均按照《危险废物贮存污染控制标准》(GB18597-2023)相关要求进行防渗、防漏处理,安全可靠,不会受到风雨侵蚀,可有效防止临时存放过程中的二次污染。

7.6.3 一般固废收集和存放、转运、处置要求

- (1)一般固体废物产生后,应按不同类别和相应要求及时放置到临时存放场所并按《环境保护图形标志 固体废物贮存(处置)场》(GB15562.2-1995)设置环境保护图形标志。
 - (2) 存放场所应具备防雨淋、防泄漏、防扬散、防流失等设施或措施。
- (3)一般固体废物贮存场禁止将危险废物和生活垃圾混入。如混入危险废物,则全部按照危险废物进行处置。

- (4)建设单位应建立检查维护制度。定期检查维护堆存设施,发现异常及时处理,以保障正常运行。
- (5)应合理采用先进的生产技术和设备,减少工业固体废物的产生,降低工业固体废物的危害性。
- (6)出厂的固体废物应运至协议内指定的堆场,运输单位不得擅自向固体废物 贮存场所以外的区域倾倒、堆放、丢弃、遗撒固体废物。
 - (7) 建立一般固体废物产生、贮存、处置、利用等记录台账,按时上报。

7.6.4 危险废物的申报要求

根据《中华人民共和国固体废物污染环境防治法》及生态环境局对危险废物规范化管理工作实施方案的要求,建设单位应规范和落实危险废物的申报登记工作,具体内容如下:

(1) 危险废物申报登记工作的落实

落实危险废物的申报登记措施和责任,由专人负责通过"固体废物管理信息系统" 做好本单位的危险废物的申报登记工作。

(2) 危险废物申报登记的要求及程序

必须在每年规定的日期前通过"固体废物管理信息系统"如实申报上年度危险废物利用及处置情况,并按规定先通过网上申报,经生态环境局审核同意后,逐级上报。

(3) 危险废物申报登记负责人职责

危险废物申报登记负责人必须提高认识,认真负责,申报登记数据必须以台账 数据为基础如实申报,不得虚漏报、瞒报。

7.6.5 危险废物的运输方式及要求

危险废物外运至处置单位时必须严格遵守以下要求:

- ①做好每次外运处置废物的运输登记,按照要求开展危险废物申报登记要求, 进行网上申报。
- ②危险废物处置单位的运输人员必须掌握危险化学品运输的安全知识,了解所运载的危险废物的性质、危害特性、包装容器的使用特性和发生意外时的应急措施。运输车辆必须具有车辆危险货物运输许可证。驾驶人员必须由取得驾驶执照的熟练人员担任。

- ③处置单位在运输危险废物时必须配备押运人员,并随时处于押运人员的监管之下,不得超装、超载,严格按照所在城市规定的行车时间和行车路线行驶,不得进入危险化学品运输车辆禁止通行的区域。
- ④运输车辆需安装 GPS 定位装置,随车配备灭火器、沙土及吸收棉等泄漏收集应急设备;装卸货前对废物包装容器进行检查,并严格遵守装卸货操作程序。
- ⑤危险废物在运输途中若发生被盗、丢失、流散、泄漏等情况时,公司及押运 人员必须立即向当地公安部门报告,并采取一切可能的警示措施。
- ⑥一旦发生危险废物泄漏事故,公司和处置单位都应积极协助有关部门采取必要的安全措施,减少事故损失,防止事故蔓延、扩大;针对事故对人体、动植物、土壤、水源、空气造成的现实危害和可能产生的危害,应迅速采取封闭、隔离、洗消等措施,并对事故造成的危害进行监测、处置,直至符合国家环境保护标准。

7.6.6 固体废物管理台账要求

(1) 一般固体废物管理台账要求

项目实际运营过程中,建设单位应按《一般工业固体废物管理台账制定指南(试行)》的规范要求,做好一般固体废物台账。

(2) 危险废物管理台账要求

建设单位应按《危险废物管理计划和管理台账制定技术导则》(HJ1259-2022)要求做好项目危险废物管理台账。

8 环境影响经济损益分析

8.1 环保投资分析

环境经济损益分析是环境影响评价的一项重要工作内容,其主要任务是估算建设项目需要投入的环保投资和所能收到的环境保护效果。因此,在环境经济损益分析中,除需计算用于控制污染所需投资的费用外,还要同时核算可能收到的环境与经济实效。

8.1.1 环保防治措施投资

本项目环境治理设施建设情况及投资金额估算情况详见表 8.1-1。

表 8.1-1 项目环境治理设施投资估算

序号	项目		环保防治措施内容	投资额	资金来源
		生活污水	厂区化粪池、污水管网、规范排污口	5 万元	企业自筹
1	废水	生产废水	煤泥废水: 1座 5m³ 沉淀池及废水收集管线; 锅炉排污水、化水系统废水: 1座 200m³ 循环 水池及废水收集管线; 脱硫系统废水: 1座 1m³ 废水处理池及废水收 集管线; 锅炉冲洗废水、冷却系统排水、一体化净水 设施废水: 1座 20m³ 沉淀池及废水收集管线	15 万元	企业自筹
		初期雨水	1 座初期雨水池 77m³,雨水管网	2 万元	企业自筹
		锅炉烟气	采取"低氮燃烧技术+SNCR/SCR耦合式脱硝+旋风-布袋除尘+石灰石-石膏湿法脱硫"设施处理后经一根45m的烟囱排放,并设立规范采样口和标识牌	1298 万 元	企业自筹
		煤燃料破碎 粉尘	1 套布袋除尘器 TA001,1 根 15m 高排气筒 (DA001),并设立规范采样口和标识牌		企业自筹
		炉前煤仓粉 尘	1 套布袋除尘器 TA002, 1 根 15m 高排气筒 (DA002),并设立规范采样口和标识牌		企业自筹
2	废气	生物质燃料 破碎粉尘	1 套布袋除尘器 TA003, 1 根 15m 高排气筒 (DA003),并设立规范采样口和标识牌	460 万	企业自筹
		炉前生物质 仓粉尘	1 套布袋除尘器 TA004, 1 根 15m 高排气筒 (DA004),并设立规范采样口和标识牌	400 / 3	企业自筹
		灰库粉尘	1 套布袋除尘器 TA005,1 根 15m 高排气筒 (DA005),并设立规范采样口和标识牌		企业自筹
		石灰石粉仓 粉尘	1 套布袋除尘器 TA006, 1 根 15m 高排气筒 (DA006),并设立规范采样口和标识牌		企业自筹
3	固废	一般工业固废	炉渣:设置 1 座直径 φ 6m 钢结构渣仓 100m³ 暂存,定期交由具有主体资格和技术能力的 单位回收综合利用	210 万元	企业自筹

			飞灰:设置 1 座直径 ϕ 8m 钢结构灰库 200m³ 暂存,定期交由具有主体资格和技术能力的单位回收综合利用		
			脱硫石膏:设置1座石膏贮存间暂存,定期 交由具有主体资格和技术能力的单位回收综 合利用		
			污泥: 厂区内规划有 1 个污泥临时存放区, 脱水晾干后掺入锅炉燃烧		
			废离子交换树脂、废滤袋:由厂商定期更换, 更换后由厂商负责回收		
		危险废物	厂区内规划建设1间危废贮存间,落实好危险废物贮存管理标识标牌,危险废物定期委托有资质单位外运处置	5 万元	企业自筹
		生活垃圾	厂区内设立生活垃圾收集桶,交由环卫部门 定期清运	1 万元	企业自筹
4	噪声	墙体隔声、	设备基础减振、隔声罩、消音器等降噪措施	100 万元	企业自筹
5	地下水、 土壤	设置分区防渗	5 万元	企业自筹	
6	环境风险	5 万元	企业自筹		
		2106 万 元	-		

8.1.2 环保防治措施运行费用

项目环保设施运行费用估算情况详见表 8.1.2-1。

表 8.1.2-1 项目环保防治措施投资估算

序号	项目	运行费用(万元)
1	废气治理设施运行费用	80
2	废水处理设施运行费用	3
	合计金额	83

8.1.3 环保监测费用

根据项目日常监测计划,运营期每年环保监测预估费用约60万元。

8.2 环境经济效益分析

8.2.1 经济效益分析

本项目总投资 21650 万元,资金全部企业自筹,其中环境治理设施及日后设施运行管理、污染物日常监测费用投资约 2249 万元。

根据项目可研报告,本项目建成投产后,平均每年供热量按热力价格折算可获利

1927.76 万元,全部投资回收期 7.63 年,回收期短,有较好的经济效益。

8.2.2 社会效益分析

本项目的建设,在满足供热需求的同时,有利于振兴地方经济,提高当地人民群众的生活水平。工程建设期间需要当地提供建筑材料和劳动力,投产后当地政府将有可观的税收收入。因此本工程的建设有利于改善当地的财政收入,拉动相关企业的发展。当地财政收入的增加、经济的发展和城乡居民收入的提高也有利于巩固民族团结,有利于构建社会主义和谐社会。项目的建设期可创造多个就业机会,运行期能解决相关人员的就业问题。

8.2.3 环境效益分析

本项目新增环保投资约 2249 万元,占工程总投资 21650 万元的 10.4%。

环保投资和运行费用的投入,从表观看虽为负经济效益,但同时可带来良好的环境 效益和潜在的社会效益,主要表现在以下几个方面:

- (1) 采取切实可行的废水处理措施,生活污水经预处理达标后排入市政污水管网,脱硫系统废水、锅炉排污水及化水系统废水收集回用不外排,其余生产废水处理达标后外排,对区域地表水体影响较小。
- (2) 采取高效处理的废气治理设施工艺,实现污染物削减排放,对区域环境空气质量及污染物排放总量管控具有重要意义。
- (3)对厂区内设备噪声污染源采取相应治理措施,使厂界噪声达标排放,避免企业和周边群众产生不必要的纠纷。
- (4)对厂区潜在的污染区域进行防渗处理,可有效减缓项目运行对地下水、土壤 环境的影响。
- (5)项目固体废物合理处置,消除了对环境影响,有明显的环境效益和经济效益。 综上所述,项目通过采取各项污染防治措施,污染物排放可得到有效控制,减轻或 消除对环境的不利影响,其环境效益和潜在社会效益显著。

8.3 小结

本项目投产后,有较好的经济社会效益。污染治理设施的投入,主要回报是环境效益,同时还具有良好的经济效益和社会效益,符合经济与环境协调发展的可持续发展战略。

9 环境管理与监测计划

环境管理与环境监测是企业管理中的重要环节,建立健全环保机构,加强环境管理工作,开展厂内环境监测、监督,并把环保工作纳入生产管理,对于企业建设污染物排放,促进资源的合理利用与回收,对提高经济效益和环境效益有着重要意义。

9.1 项目污染物排放情况

建设单位需严格按照污染物排放清单及其管理要求,进行项目的污染物排放的管理,确保各项污染物达标排放和总量控制要求。

9.1.1 总量控制

根据《福建省环保厅关于印发<福建省建设项目主要污染物排放总量指标管理办法 (试行)>的通知》(闽环发〔2014〕13 号)、《福建省人民政府关于全面实施排污权 有偿使用和交易工作的意见》(闽政〔2016〕54 号)、《三明市生态环境局关于印发< 三明市排污权有偿使用和交易实施细则>的通知》(明环评〔2020〕41 号)等有关文件 要求,排污权核定因子为 COD、NH₃-N、SO₂、NOx。

9.1.1.1 总量控制因子

根据该工程的排污特点,确定本项目的污染物总量控制因子如下:

废水污染物: COD、NH3-N:

废气污染物:颗粒物、汞及其化合物、氨(非约束性指标); SO₂、NOx。

9.1.1.2 总量控制指标

(1) 废水污染物排放总量

本项目锅炉冲洗废水、冷却系统排污水和一体化净水设施废水作为生产废水,收集至沉淀池处理达标后排入市政污水管网,进入马铺污水处理厂处理;生活污水单独收集至厂区化粪池预处理后排入市政污水管网,进入马铺污水处理厂处理,马铺污水处理厂尾水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准 A 标准(COD≤50mg/L、NH₃-N≤8mg/L)。

项目生活污水排放量为 1663.34t/a, 其中 COD 排放总量为 0.0832t/a、NH₃-N 排放总量为 0.0133t/a。生产废水排放量为 46350.37t/a, 其中 COD 排放总量为 2.3175t/a、NH₃-N 排放总量为 0.3708t/a。

(2) 废气污染物排放总量

根据工程分析核算,大气污染物允许排放总量按允许浓度排放限值进行核算,设计燃料和校核燃料中允许排放总量取其最大值,则项目废气中颗粒物排放总量为22.08t/a(含粉尘排气筒颗粒物)、S0₂排放总量为70.735t/a、NOx排放总量为101.05t/a。

9.1.1.3 新增排污权及指标来源

根据《三明市生态环境局关于印发<三明市排污权有偿使用和交易实施细则>的通知》(明环评(2020)41号):排污权是指排污单位按照国家或地方规定的现行污染物排放标准,以及污染物排放总量控制要求,在一定期限内允许排放的主要污染物种类和数量;初始排污权是指现有工业排污单位在生态环境行政主管部门核定和分配的额度内,依法取得的重点污染物排放总量指标;新增排污权是指《福建省人民政府关于推进排污权有偿使用和交易工作的意见(试行)》实施后(2014年5月23日实施)新(改、扩)建项目新增的主要污染物总量控制指标;可交易排污权是指工业排污单位通过污染治理、技术改造、强化管理、清洁能源替代、自主关停淘汰和集中式水污染治理削减治理的可用于出让的主要污染物总量控制指标;现阶段实施排污权有偿使用和交易的污染物为化学需氧量、氨氮、二氧化硫、氮氧化物,实施对象包括工业排污单位和集中式水污染治理单位,实施交易的主体包括工业排污单位和政府排污权储备管理机构等。

本项目为新建项目,无需核定初始排污权,项目新增总量控制指标见表 9.1-1。

类别	污染物名称	申请调	配总量	总量来源
光 別	10条物石物	浓度	排放量(t/a)	· · · · · · · · · · · · · · · · · · ·
	废水量	-	1663.34	
生活污水	COD	50mg/L	0.0832	区域统一调配
	NH ₃ -N	8mg/L	0.0133	
	废水量	-	46350.37	通过海峡股权交易中心购买取
生产废水	COD	50mg/L	2.3175	超过两峡放仪又勿中心购关取 得
	NH ₃ -N	8mg/L	0.3708	1ਚ
	颗粒物	10mg/m ³	22.08	区域统一调配
废气	二氧化硫	35mg/m^3	70.735	通过海峡股权交易中心购买取
	氮氧化物	50mg/m ³	101.05	得

表 9.1-1 项目新增总量控制指标一览表

废水总量来源:根据《福建省环保厅关于进一步明确排污权有关问题的通知》(闽 环保财(2017)22号)规定,生活污水污染物排放不纳入建设项目主要污染物排放总 量指标管理范围,无需进行排污权交易。因此,本项目生活污水经市政污水管网进入 马铺污水处理厂处理,所需总量由马铺污水处理厂统一调配,不再另行调剂总量。生产废水 COD 排放量 2.3175 吨/年>1.5 吨/年,NH₃-N 排放量 0.3708 吨/年>0.25 吨/年,不属于豁免购买类别,项目正式投产前需通过海峡股权交易中心购买取值,按照 1 倍量交易比例取得。

废气总量来源:根据《三明市生态环境局关于印发<三明市排污权有偿使用和交易实施细则>的通知》(明环评(2020)41号):"对于新(改、扩)建项目环评文件中4项主要污染物新增排放量同时满足化学需氧量≤1.5吨、氨氮≤0.25吨、二氧化硫≤1吨、氮氧化物≤1吨的,可豁免购买排污权及来源确认"。本项目二氧化硫排放量70.735吨/年>1吨/年,氮氧化物排放量101.05吨/年>1吨/年,不属于豁免购买类别,项目正式投产前需通过海峡股权交易中心购买取值,按照1倍量交易比例取得。

9.1.2 污染物排放清单

项目污染物排放清单见表 9.1-2。

9.1-2 项目全厂污染物排放清单

序号	项目		清单内容 三明市沙县青州片区集中供热能源综合利用项目										
1	项目名称		三明市沙县青州片区集中供热能源综合利用项目 一期工程设计建设 2 台 40t/h 低压多燃料循环流化床锅炉,采用煤炭和生物质作为燃料(煤 70%+生物质 30%),配套建设 6.7 公里										
2	建设规模				、 民锅炉,采用煤炭和生物质作为 集中区工业企业生产用汽需求。								
2	建以 ///(英		A.然代目內, 俩足—切	用少公司拥广业四、 以件为	力 85.39 万 GJ)	建 风石平於 1.0MFa、 250 C	然在 34.30 / 11 (1) 然						
					原料组分控制要求								
3	主要原辅材料		年最大使用量	计量单位	硫元素占比	有毒有害成分占比	其它						
3.1	煤燃料		87360	t/a	0.39%	/	/						
3.2	生物质燃料		37440	t/a	0.06%	/	/						
3.3	石灰石		792	t/a	/	/	/						
3.4	氨水		480 t/a		/	/	/						
3.5	催化剂(TiO ₂)		2	t/a	/	/	/						
3.6	0#轻柴油		128.65	t/a	/	/	/						
3.7	机油		0.5	t/a	/	/	/						
		要素	 污染源类型 	环保措施及运行参数									
			锅炉烟气	采用低氮燃烧技术+SNC	采用低氮燃烧技术+SNCR+高温 SCR 脱硝工艺+多管-布袋除尘+石灰石-石膏湿法脱硫装置处理后经 1 根 45m 高烟囱有组织排放								
	环保措施及主		煤燃料破碎粉尘	破碎机台上方加设集气装	置收集,经 1 套布袋除尘器 T. 织排放,设计风量		ᆙ气筒(DA001)有组						
4	要运行参数	废气	炉前煤仓粉尘	仓顶配置的1套布袋除金	尘器 TA002 收集处理后经 1 根 8000m³		组织排放,设计风量						
			生物质燃料破碎粉	夜碎粉 破碎机台上方加设集气装置收集,经1套布袋除尘器 TA003 处理后经1根15m高排气筒(DA003)									
			尘		织排放,设计风量	量 8000m³/h							
						高排气筒(DA004)有组织排放	放,设计风量 8000m³/h						
			灰库粉尘	仓顶配置的1套布袋除尘	器 TA005 处理后经 1 根 15m 和	高排气筒(DA005)有组织排放	放,设计风量 8000m³/h						

			石灰石粉	仓粉尘	仓顶配置的	1 套布袋	除尘器 TA006 处:	理后经 1	根 15m 高	高排气筒	(DA00	06)有组	且织排放,	设计风量 8000m³/h	
			氨/	Ī			氨水罐采取密封	式储罐,	少量逸品	出的氨气	排入清	 水罐口	中吸收		
			脱硫废水、水					收集回	1月于调剂	显灰用水					
			化水系统	推污水				火集回用	于输送系	统冲洗					
		废	输送系统》	中洗废水		收集回用于厂区降尘、绿化灌溉及地面冲洗用水									
		水	锅炉冲洗废 化净水设施 系统定期	施及冷却	收	集至1座	泛沉淀池(20m³)。	处理后达	标排入市	`政污水管		进入马·	铺污水处	理厂处理	
			初期下	雨水	收	<u>集至1座</u>	初期雨水池 77m³	沉淀后达标排入市政污水管网,进入马铺污水处理厂处理						理厂处理	
			生活注	污水		收集至厂区化粪池预处理达标后排入市政污水管网,进入马铺污水处理厂处理									
			噪声		设备基础减振、车间墙体隔音,隔声罩、消音器等降噪措施										
	固体 一般固度 疲物 危险废物 生活垃圾 地下水 环境风险				②飞灰: 1 g ③脱硫石膏 ④污泥: 1 / ⑤废离子交: 1 间危 采取"源头	座钢结构对 1 座 1 座 石 1 个 污泥临时换树脂、 1 座 广 换树脂、 度贮存间	查仓 100m³,定期 灰库 200m³ 暂存, 膏贮存间暂存,定 时存放区,脱水畴 废滤袋:由厂商员 ,落实好危险废好 厂区内设立。 区防控、污染监狱 4m×4m×2m=3 ,并设置 1 个事故 个,容积 77m³	定期交由具 证期交由具 证用更换, 勿贮存管理 生活垃圾。则、应急。 则、应急。 」,制定地 2m³围堰;	日具有主体。 银有主体。 银炉燃炉 更换下 理标识标 收集桶, 响应"相	体资格和技统 后由厂商 牌, 危险 上, 危险 上, 危险 上, 危险 上, 危险 上, 危险 上, 在 一种 , 由 一方 。 中 一种	中技术能力 放术能力 商负责[四 金废物员 卫部门员 式,落实	定力的单位 可的单位 可收 定期委打 定期清 实好厂	单位回收约 立回收综合 任有资质 [©] 运 区分区防	宗合利用 合利用	
5	污染物排放		类别	污染物		· · · · · ·	排放情况 排放量(t/a)	排放标速率	浓度	· 总量 指标	排 放 规	排放去	排放 口信 息	执行标准	

					率 (kg/h)	浓度 (mg/ m³)	预测	允许	(kg/ h)	(mg/ m³)		律	向		
			颗粒	设计 燃料	0.162	0.641	1.296	20.21	/	10	20.21	连	大		
			物物	校核 燃料	0.586	2.90	4.687	16.16	/	10	20.21	续	气		// 学工公面按进
			二氧	设计 燃料	1.128	4.465	9.023	70.73 5	/	35	70.73	连	大		《关于全面推进 锅炉污染整治促 进清洁低碳转型
			化 硫	校核 燃料	3.187	15.776	25.494	56.56	/	35	5	续	气		的意见》(闽环规 〔2023〕1号)
			氮 氧	设计 燃料	10.105	40	80.84	101.0	/	50	101.0	连	大	锅炉	(2023) 1 97
	废	锅炉烟气	化 物	校核 燃料	8.08	40	64.64	80.8	/	50	5	续	气	烟囱	
	气		汞	设计 燃料	5.6×10 -5	0.0002	0.0004 5	0.101	/	0.05	0.101	连	大		GB13271-2014 《锅炉大气污染
			水	校核 燃料	4.75×1 0 ⁻⁵	0.0002	0.0003 8	0.081	/	0.05	0.101	续	气		物排放标准》表 3 中燃煤锅炉限值
				设计 燃料	0.576	2.28	4.608	4.608	/	2.28		连	大		参考《工业锅炉污 染防治可行技术
			氨	校核 燃料	0.461	2.28	3.684	3.684	/	2.28	4.608	续	气气		指南》(HJ 1178-2021)控制 氨逃逸浓度限值
		破碎楼粉 尘	颗	粒物	0.070	8.73	0.5	59	3.5	120	0.559	间 歇	大气	DA001	GB16297-1996 《大气污染物综
		炉前煤仓 扬尘	颗	粒物	0.035	4.38	0.28	80	3.5	120	0.280	连 续	大气	DA002	合排放标准》表 2 的二级标准限值

	炉前生物 质料仓扬 尘 灰库扬尘 石灰石粉 仓扬尘	颗粒物 颗粒物 颗粒物	0.015	1.88 9.92	0.	120	3.5	120	0.120	连	大		
	石灰石粉		0.079	9 92						续	气	DA004	
		颗粒物		7.72	0.	635	3.5	120	0.635	连续	大气	DA005	
		715(71-21)	0.005	0.56	0.	036	3.5	120	0.036	连续	大气	DA006	
	氨水罐	氨	0.018	/	0.	144	/	1.5	0.144	连续	大气	/	GB14554-1993 《恶臭污染物排 放标准》表 1 限值
	类别	污染物	出厂排) (t/a)		排放浓 度限值 (mg/L)	总量打	指标	排放 规律	排放	去向	排放	口信息	执行标准
		废水量	1663	34	-	1663	.34				废水	总排口	
		COD	0.831	7	500mg/L	0.83	17	\				01 (E:	
	生活污水	BOD ₅	0.499		300mg/L	0.49		间歇	马铺污			57′54.08	GB8978-1996《污
		SS	0.665		400mg/L	0.66	53	排放	理儿			N: 9′10.38″	水综合排放标准》 表 4 三级标准、
		NH ₃ -N	0.058	32	35mg/L	0.05	82				20 2)	GB/T31962-2015
	支	废水量	46350	.37	/	46350).37				生产	· ·废水排	《污水排入城镇
7.	K	COD	23.13	68	500mg/L	23.13	368				放口	DW002	下水道水质标准》
	生产废水	SS	18.54		400mg/L	18.54	102	间接 排放	马铺污 理》		117°9	(E: 96'25.41 N: 8'11.20"	表 1B 级以及马铺 污水处理厂进水 水质要求

			废物类型	固废名称	固废代码/危废代码	产生量 (t/a)	利用量(t/a)	处置量(t/a)	利用或处置去向
				炉渣	SW03:900-001-S03	7686	7686	0	交由有主体资格
				飞灰	SW02:900-001-S02	5124	5124	0	或资质的单位回
				脱硫石膏	SW06:441-001-S06	127.55	127.55	0	收综合利用,废离
		固	一般工业固废	废离子交换树脂	SW59:900-099-S59	3.7	3.7	0	子交换树脂和废
		体		沉淀池污泥	SW07:900-099-S07	2.177	2.177	0	滤袋交由厂商回
		废		废滤袋	SW59:900-009-S59	0.2	0.2	0	收,污泥脱水晾干 后掺入锅炉燃烧
		物		废催化剂	HW50: 772-007-50	3	0	3	
				脱硫废水污泥	待鉴定	27.61	0	27.61	*************************************
			危险废物	废机油	HW08: 900-249-08	0.5	0	0.5	委托有资质单位定期外运处置
				空油桶	HW49: 900-041-49	0.08	0	0.08	足别外色处直
				含油废抹布	HW49: 900-041-49	0.02	0	0.02	
			生活均	立圾	-	6.161	0	6.161	交环卫部门清运

9.1.3 向社会公开的信息内容

1、报告书编制过程

建设单位在本环境影响报告书编制过程中应向社会公开:项目基本情况、拟建设位置、主要环境影响情况、拟采取的环保措施、报告书环境影响主要结论、公众参与的途径和方式等。

2、生态环境部门受理期间

生态环境部门受理本环境影响报告书后将向社会公布:报告书全文、公众参与说明、公众提出意见的方式和途径、建设项目概况、主要环境影响、环境保护对策与措施等。

3、施工期间

建设单位在施工中期向社会公开建设项目环境保护措施进展情况、施工期环境保护措施落实情况等。

4、竣工验收期间

建设单位在组织建设项目竣工环境保护验收时向社会公开:建设项目配套建设的环境保护设施竣工日期、公开调试的起止日期和验收报告。

5、运营期间

项目运营期间建设单位定期向社会公开: (一)企业基本信息,包括企业生产和生态环境保护等方面的基础信息; (二)企业环境管理信息,包括生态环境行政许可、环境保护税、环境污染责任保险、环保信用评价等方面的信息; (三)污染物产生、治理与排放信息,包括污染防治设施,污染物排放,有毒有害物质排放,工业固体废物和危险废物产生、贮存、流向、利用、处置,自行监测等方面的信息; (四)碳排放信息,包括排放量、排放设施等方面的信息; (五)生态环境应急信息,包括突发环境事件应急预案、重污染天气应急响应等方面的信息; (六)生态环境违法信息; (七)本年度临时环境信息依法披露情况; (八)法律法规规定的其他环境信息。

9.2 环境管理

9.2.1 环境管理制度

环境管理是采用技术、经济、法律等多种手段,强化保护环境、协调项目建设和 经济发展。为了保证项目运营期间产生的环境问题减少到最小,有必要建立相应的环 境管理体系和监测计划。

建设项目的环境影响评价制度和环境保护设施与主体工程同时设计、同时施工、同时投产的"三同时"制度是我国预防为主、防治结合环境保护政策的体现,两种制度相互衔接,形成了对建设项目的全过程管理,是防止建设项目产生的新污染源和生态环境破坏的重要措施。

9.2.2 环境管理计划

项目环境管理工作由公司成立的安全环保部门负责,环境管理工作计划见表 9.2-1。

序号	管理阶段	环境管理工作计划要求
1	环境管理总 要求	根据国家建设项目环境保护管理规定,认真落实各项环保手续: ①项目开工前,履行"三同时"手续; ②项目投产试运行前,及时申领排污许可证;试运行后前三个月,进行竣工环境保护验收; ③生产运营期间,定期请当地生态环境主管部门监督、检查,协助主管部门做好环境管理工作,对不达标装置及时整改; ④配合环境检查单位做好日常环境监测工作,按时申报自行监测年度方案,定期上报自行监测数据。
2	施工阶段环境管理要求	认真规划,文明施工: ①明确施工垃圾处理方式及去向; ②按环评报告及批复要求,监督环保设施及措施的建设; ③加强施工安全教育,杜绝突发环境事件发生。
3	生产运营阶 段环境管理 要求	保证环保设施正常运行,主动接受环保部门监督,落实厂区事故应急措施: ①安全环保部门负责全厂环保工作; ②及时申领排污许可证,按时申报污染物排放情况,落实环保竣工验收工作; ③严格按照监测计划,落实日常环境监测;建立环境管理记录档案,对日常监测数据、污染事故的调查与处理记录、培训与培训结果、废水废气处理达标排放情况,环保设施运行情况等进行记录并归档; ④编制《突发环境事件应急预案》并备案,确保应急措施、设施的齐备和完好;

表 9.2-1 项目环境管理工作计划一览表

9.2.3 环境管理重点

运营期环境管理主要目的是保证生产工艺设施、污染防治设施的正常运行、"三废"的稳定达标排放、环境风险的有效防范等,结合项目特点,本项目运营期环境管理要求如下:

(1) 贮运工程

原辅材料进厂临时贮存,应做好分区、分类存放,进出库台账记录工作,煤料棚、

生物质料棚、氨水储罐、储油罐、石灰石粉料仓等原辅料暂存场所做好防渗、防漏、防晒、防雨等措施,制定仓库管理制度。

(2) 主体工程

应根据工艺特点合理规划布局车间,优先选用符合国家要求的节能、环保技术、安全成熟的先进工艺及设备,涉及废水的装置应采取有效防渗措施,并对生产过程中产生的废气进行集中收集处理,确保废气达标排放。制定生产设备运维台账,如实记录运行工况,定期开展设备维护检修。

(3) 环保工程

①废气治理设施:项目锅炉烟气按要求落实脱硫、脱硝和除尘处理系统,处理工艺应能满足废气特征污染物排放标准要求,锅炉烟气中颗粒物、二氧化硫和氮氧化物排放浓度须达到《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号)超低排放限值要求(即颗粒物≤10mg/m³、二氧化硫≤35mg/m³、氮氧化物≤50mg/m³);煤炭、生物质燃料贮存、输送及装卸过程粉尘应配置相应的除尘装置,全过程采取洒水降尘等措施;废气治理设施进、出口预留采样监测孔,定期委托有资质单位进行检测,有效管控废气达标排放。

②废水处理设施:项目生产废水必须配套处理设施、回用水循环水池,收集处理后确保做到部分回用,未能回用部分再达标外排,处理工艺应能满足环评要求;生活污水配套化粪池预处理后达标排入市政污水管网,设置规范的出水排放口及采样取水槽,定期委托有资质单位进行检测,有效管控污水达标排放。厂区建设规范的清污分流和雨污分流系统,并配套事故应急池、初期雨水收集池,以满足相关管理要求。

③固体废物暂存处置措施:对生产过程中各类固体废物的产生、贮存、处置数量及去向进行详细记录。分类分区暂存,分别设立专门贮存区或暂存料仓,分别按照一般工业固废和危险废物进行管理。加强固体废物收集、暂存、转运、处置管理。根据《危险废物产生单位管理计划制定指南》制定项目危险废物管理计划,不得将不相容的危险废物混合或合并存放,必须做好危险废物产生、处置情况的记录,记录上必须注明危险废物的名称、来源、数量、特性和包装容器的类别,入库日期、存放库位、废物出库日期及接收单位名称,记录应至少保留5年;必须定期对贮存危险废物的包装容器计贮存设施进行检查,发现破损时应及时采取措施清理更换。与有资质单位签订委托处置协议,危险废物收集、贮存、运输严格按照《危险废物收集、贮存、运输

技术规范》及《危险废物转移联单管理办法》要求执行,危险废物的运输执行危险废物转移"五联单"制度,保证运输安全。

④噪声控制:厂界噪声应当达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类要求。委托有资质单位定期对项目厂界噪声进行检查,确保厂界噪声达标排放;加强设备的使用和日常维护管理,维持设备处于良好的运转状态,避免因设备运转不正常导则噪声增高。

⑤地下水、土壤污染防控:厂区分区进行防渗处理,危废贮存间、氨水罐区、储油罐、废水治理设施区域设为重点防渗区,地面建设防渗涂层,氨水罐区四周设置围堰,危废贮存间规范建设废液收集沟、收集池等。委托有资质单位定期对项目厂区内地下水开展环境现状监测,及时管控污染情况。

⑥环境风险防范:根据建设情况及时完成突发环境事件应急预案并定期开展应急 演练,落实环境风险防控措施,建设事故应急池、雨水总阀门等应急装置,确保应急 措施、设施的整齐和完好。

9.3 环境监测计划

9.3.1 环境监测机构

项目运营期的环境检查主要由建设单位委托有资质的环境监测第三方按照制订的 年度监测计划开展监测工作,为建设项目环境管理部门执行各项环境法规、标准、开展环境管理提供可靠的检查数据和资料。为保证监测计划的执行,建设单位应与第三方监测单位签订有关环境监测合同。

9.3.2 环境监测计划

项目运营期监测根据《排污单位自行监测技术指南 火力发电及锅炉》 (HJ820-2017)、《排污单位申请与核发技术规范 锅炉》 (HJ953-2018)的要求,制定运营期环境监测计划,见表 9.3-1。

序号	监测内容	监测因子	监测点位	监测频次	监测方式
1	废水	pH、COD、BOD5、SS、NH3-N、TP、石油类、氟化物、硫化物、挥发酚、溶解性总固体(全盐类)、流量	生产废水排放 口 DW002	1 次/月	委托监测
		PH、总汞、总铅、总镉、总砷、 流量	脱硫废水设施 出口	1 次/月	委托监测

9.3-1 项目环境监测计划

		COD	雨水排放口	1次/日(排 放口有流动 水排放时开 展监测)	委托监测
		颗粒物、二氧化硫、氮氧化物、	锅炉烟囱	自动监测(14MW 或 20t/	
			锅炉烟囱	1 次/季度	委托监测
		颗粒物	排气筒 DA001	1 次/年	委托监测
2	有组织废气	颗粒物	排气筒 DA002	1 次/年	委托监测
		颗粒物	排气筒 DA003	1 次/年	委托监测
		颗粒物	排气筒 DA004	1 次/年	委托监测
		颗粒物	排气筒 DA005	1 次/年	委托监测
		颗粒物	排气筒 DA006	1 次/年	委托监测
3	无组织废气	颗粒物	厂界	1 次/季度	委托监测
3	儿组织及【	氨	氨罐区周边	1 次/季度	委托监测
4	噪声	连续等效 A 声级(昼间、夜间)	厂界	1 次/季度	委托监测

当监测结果出现超标时,排污单位需提高监测频次,并检查超标原因。短期内无 法实现稳定达标排放的,向生态环境主管部门提交事故分析报告,说明事故发生的原 因,采取减轻或防止污染的措施,以及今后的预防及改进措施等;若因发生事故或者 其他突发事件,排放的污水可能危及城镇排水与污水处理设施安全运行的,立即采取 措施消除危害,并及时向城镇排水主管部门和生态环境主管部门等有关部门报告。

运营期间所有检测数据一律归档保存,定期向有关主管部门呈报存档,并随时接 受生态环境的监督检查。对于常规监测数据应该进行公开,特别是对项目所在区域的 公众进行公开,满足法律中关于知情权的要求。

9.4 "三同时"制度及环保验收

9.4.1 "三同时"制度

根据《中华人民共和国环境保护法》和《建设项目环境保护管理条例》:建设项目需要配套建设的环境保护设施,必须与主体工程同时设计、同时施工、同时投产使用。配套建设的环境保护设施经验收合格,方可投入生产或者使用;未经验收或者验收不合格的,不得投入生产或者使用。防止污染的设施要符合经批准的环境影响评价文件的要求,不得擅自拆除或者闲置。

9.4.2 环保设施竣工验收

建设单位是建设项目竣工环境保护验收的责任主体,要按照《建设项目竣工环境保护验收暂行办法》规定的程序和标准,组织对配套建设的环境保护设施进行验收,编制验收报告,公开相关信息,接受社会监督,确保建设项目需要配套建设的环境保护设施与主体工程同时投产或者使用,并对验收内容、结论和所公开信息的真实性、准确性和完整性负责,不得在验收过程中弄虚作假。本项目应当参照《建设项目竣工环境保护验收技术指南污染影响类》编制验收监测报告,本项目竣工环境保护验收主要内容见表 9.4-1。

9.4-1 项目竣工环境保护验收清单

	项目	环保设施	验收标准及要求	监测因子	监测点位
		低氮燃烧技术+SNCR+ 高温 SCR 脱硝工艺+多管	《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规(2023)1号)超低排放限值	颗粒物、二 氧化硫、氮 氧化物	
	锅炉烟气	-布袋除尘+石灰石-石膏 湿法脱硫装置,1根45m 烟囱(除尘效率99.95%、	《锅炉大气污染物排放标准》(GB13271-2014)表 3 中燃煤锅炉限值	汞及其化合 物、林格曼 黑度	锅炉烟囱 出口
废气		脱硫效率 95%、脱氮效率 80%、汞去除效率 70%)	参考《工业锅炉污染防治可 行技术指南》(HJ 1178-2021)控制氨逃逸浓度 限值	氨	
	粉尘	6 套袋式除尘器, 6 根排 气筒,高度各 15m,设计 风量各 8000m³/h(废气收 集效率 80%、除尘效率 90%)	《大气污染物综合排放标 准》(GB16297-1996)表 2 的二级标准限值	颗粒物	除尘器进 口,排气 筒出口, 厂界
	氨气	密闭式储罐	《恶臭污染物排放标准》 (GB14554-1993)表1限值	氨	氨罐区周 边
废	生活污水	厂区化粪池	《污水综合排放标准》 (GB8978-1996)、《污水 排入城镇下水道水质标准》 (GB/T31962-2015)以及马 铺污水处理厂进水水质要 求	废水量、 pH、COD、 NH ₃ -N、SS、 BOD ₅	无需监 测,验收 主要落实 是否纳入 市政污水 管网
水	生产废水	1 套中和+混凝沉淀+澄清 设施	《污水综合排放标准》 (GB8978-1996)、《污水 排入城镇下水道水质标准》 (GB/T31962-2015)以及马 铺污水处理厂进水水质要	废水量、 pH、COD、 SS	生产废水 排口

			求		
	噪声	基础减震、墙体隔音、隔声罩、消音器等	《工业企业厂界环境噪声 排放标准》(GB12348-2008) 3 类标准	连续等效 A 声级	厂界
		设置专门的临时存放区域	,暂存场所应符合《一般工业	固体废物贮存	和填埋污染
固	一般固废	控制标准》(GB18599-20	20)。委托有主体资格和技术	能力的单位处	置,并签订
体			回收协议		
废	危险废物	设置专门危废贮存场所,	委托有危废处理资质的单位接	收处置。危废	存放贮存场
物	厄 唑/皮彻	所应符合《危险废物》	贮存污染控制标准》(GB1859	97-2023)的相	关规定
	生活垃圾	定点收	(集,及时清运,纳入市政垃圾	及处理	
	地下水		源头管控、分区防渗措施		
1	不境风险	建设事故应急池(220m³)	、初期雨水池(77m³)、厂区	雨水总阀、氨	水罐区围堰
ر ا	个児风险		等应急措施		
1	不境管理	明确管理人员职责,完善	日常演练等记录,并规范存档	,危险废物严	格实行转移
,	小児目生	联单制度和申报	登记制度,并按管理要求建立	台账,规范档	案
J	不境监测		按规定进行监测、归档、上报		
总量	量控制指标		详见前文 9.1.1 章节		

9.5 排污许可申报

2024年4月1日,生态环境部公布了《排污许可管理办法》,自 2024年7月1日起施行。为此,排污单位在排放污染物前需申请排污许可证。根据《固定污染物排污许可分类管理名录》(2019年版),项目属于排污许可重点管理类别,见表 9.5-1。

建设单位应本项目启动设施或者发生实际排污之前,根据《排污许可证申请与核 发技术规范 锅炉》(HJ 953-2018)规定的基本情况填报要求、许可排放限值确定、合 规判定的方法以及自行监测、环境管理台账与排污许可证执行报告等环境管理要求, 按时在全国排污许可证管理信息平台完成排污许可证申报申领。

序号 行业类别 简化管理 登记管理 重点管理 三十九、电力、热力生产和供应业 44 单台且合计出力 20 吨/小时 单台或者合计出力 单台且合计出力 1 (14 兆瓦)以下的锅炉(不 热力生产和供 20 吨/小时(14 吨/小时(0.7 兆瓦) 96 含电热锅炉和单台且合计出 兆瓦)及以上的锅炉 及以下的天然气锅 应 443 力 1 吨/小时 (0.7 兆瓦) 及 (不含电热锅炉) 炉 以下的天然气锅炉)

9.5-1 固定污染物排污许可分类管理名录(摘选)

9.6 排污口规范化管理

排污口规范化管理,是实施污染物排放总量控制的基础性工作之一,也是总量控制不可缺少的一部分内容。此项工作对于强化污染源现场监督检查,促进排污单位强

化环保管理和污染源治理,实现主要污染物排放的科学化、定量化管理都有极大的现实意义。

9.6.1 排污口规范化要求的依据

- (1)《关于开展排污口规范化整治工作的通知》(原国家环境保护总局,环发〔1999〕24号);
- (2)《排污口规范化整治技术要求(试行)》(原国家环境保护总局,环监〔1996〕 470号):
- (3)《关于印发排污口标志牌技术规范的通知》(原国家环境保护总局,环办〔2003〕95号);
 - (4)《福建省污染物排放口规范化整治补充技术要求》(原福建省环境保护厅);
 - (5)《福建省工业污染源排放口管理办法》(原福建省环境保护厅)。

9.6.2 排污口规范化的范围和时间

根据《关于转发<关于开展排污口规范化整治工作的通知 >的通知》的要求,一切新建、改扩建的排污单位以及限期治理的排污单位,必须在建设污染治理设施的同时,建设规范化排污口。因此本项目的各类排污口必须规范化设置和管理,同时规范化工作应与污染治理同步实施,并列入污染治理设施的竣工验收内容。

9.6.3 排污口规范化的内容

9.6.3.1 排污口规范化建设

本项目主要涉及废水排放口、废气排放口规范化建设。

废气排放口规范化建设:按照《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)的规定要求,在废气排气筒上预留永久性采样监测孔和采样平台,便于对大气污染物排放的管理和生态环境主管部门的监督。

废水排放口规范化建设:根据《污染源监测技术规范》对废水排放口进行规范化建设,设置出水三角堰槽,使这一段的水流截面为矩形面而且水流均匀,便于测量流量、流速的测流段和采样点,并设置规范化提示标志牌及警示标志牌。

9.6.3.2 排污口规范化管理

项目按照《关于开展排放口规范化整治工作的通知》(环发〔1999〕24号〕和《排污口规范化整治技术要求(试行)》(环监〔1996〕470号)等文件要求,进行排放口

规范化建设。

①在排污口处设立的排污口标志牌要有统一的标识提示符号,以醒目、明显为目的,以警示周围群众,并规范设置采样平台。根据《关于印发排污口标志牌技术规范的通知》,按照《环境保护图形标志》(GB15562.1-1995)和《环境保护图形标志一固体废物贮存(处置)场》(GB15562.2-1995)、《危险废物识别标志设置技术规范》(HJ 1276-2022)的有关规定,在厂区产污节点设置明显的标志,规范排污口的标志,标志牌应设在与之功能相应的醒目处,并保持清晰、完整。排放口图形标志见图 9.6-1。

排放部位项目	污水排放口	废气排放口	噪声排放源	一般固体废物	危险废物
图形符号	<u></u>		D(((部 危险废物 シ字设施 ************************************
形状	正方形边框	正方形边框	正方形边框	正方形边框	长方形边框
背景颜色	绿色	绿色	绿色	绿色	黄色
图形颜色	白色	白色	白色	白色	黑色

表 9.6-1 各排污口 (源) 标志牌设置示意图

③建立排污口档案,内容包括:排污单位的名称、排污口的性质、编号、排污口的位置,主要排放的污染物的来源、种类、数量、浓度、排放规律、排放去向以及污染治理设施的运行情况等进行建档管理,并报送有关生态环境主管部门备案并接受监督、检查与指导。

②如实填写《中华人民共和国规范化排污口标志登记证》的有关内容,由生态环境主管部门签发登记证。

10 评价结论与建议

10.1 项目概况

三明市沙县青州片区集中供热能源综合利用项目位于福建省三明市沙县区青州镇马铺工业集中区 350427-20-A-38-1 地块,青州镇康健路以西,经五路以东,纬二路以北,纬一路以南位置,总投资 21650 万元人民币。本项目的生产规模为: 一期工程设计建设 2 台 40t/h 低压多燃料循环流化床锅炉,采用煤炭和生物质作为燃料,配套建设6.7 公里园区蒸汽管网,满足三明市沙县马铺产业园、长桦集中区工业企业生产用汽需求,建成后年供 1.6MPa、230℃蒸汽 34.56 万 t。

项目的主要环境问题为生产过程产生的锅炉烟气和工艺粉尘排放; 职工生活污水和生产废水排放; 生产设备运行噪声; 工业固废的处置; 环境风险等。

10.2 环境质量现状评价结论

1、大气环境质量现状

根据《2024年三明市生态环境状况公报》(2025.6.5),项目所在区域常规污染物浓度能符合《环境空气质量标准》(GB3095-2012)二级标准要求及其修改单,区域的环境空气质量良好,属于达标区。

项目区域特征污染因子汞及其化合物能满足《环境空气质量标准》(GB3095-2012)及修改单表 2 二级限值,氨能满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 限值。评价区域环境空气质量现状良好,具有一定的大气环境容量。

2、地表水环境质量现状

根据工程分析,项目锅炉定期冲洗废水、冷却系统排污水以及一体化净水设施废水作为生产废水收集至沉淀池处理后达标排入市政污水管网,其余生产水全部回用不外排;生活污水经厂区化粪池预处理达标后排入市政污水管网,项目废水均排入马铺污水处理厂处理。项目废水不直接排入地表水或海域,不再赘述周边地表水及纳污海域的水质现状。

3、声环境质量现状

项目厂界噪声现状值符合《声环境质量标准》(GB3096-2008)中的 3 类标准,项目所在区域声环境质量现状较好。

10.3 污染物排放情况

项目"三废污染物"核算见表 3.12.5-1,项目污染物总量控制指标见表 9.1-1,项目污染物排放清单见表 9.1-2。

10.4 环保措施及环境影响分析结论

1、废水

本项目生活污水主要污染物为pH、COD、BOD5、SS、NH3-N,经厂区化粪池预处理后通过市政污水管网排入马铺污水处理厂进一步处理。生产过程产生的脱硫系统废水、锅炉排污水收集回用于调湿灰用水,不外排;化水系统产生的含盐废水收集回用于输送系统冲洗用水,不外排;输送系统冲洗产生的废水收集后再回用于厂区降尘、绿化灌溉及地面冲洗用水,不外排;剩余的锅炉定期冲洗废水、冷却系统排污水、一体化净水设施废水作为生产废水收集至沉淀池处理达标后排入市政污水管网,最后进入马铺污水处理厂进一步处理,主要污染物为pH、COD、SS。项目废水处理后排放可满足马铺污水处理厂进水水质要求,不会对马铺污水处理厂处理负荷和处理工艺产生影响,对其水质净化厂水力负荷无较大影响。项目废水不直接外排,对周边水环境影响小。

2、废气

本项目锅炉烟气采取低氮燃烧+SNCR+SCR 耦合式脱硝+旋风-布袋除尘+石灰石-石膏湿法脱硫处理后通过一根 45m 高烟囱排放,锅炉燃烧烟气中的颗粒物、二氧化硫和氮氧化物排放满足《关于全面推进锅炉污染整治促进清洁低碳转型的意见》(闽环规〔2023〕1号)中颗粒物、二氧化硫和氮氧化物超低排放限值要求,汞及其化合物、林格曼黑度排放满足《锅炉大气污染物排放标准》(GB13271-2014)表 3 中燃煤锅炉限值,氨逸散浓度参考《工业锅炉污染防治可行技术指南》(HJ 1178-2021)控制氨逃逸浓度限值,锅炉燃烧烟气达标排放。

煤炭、生物质贮存、输送、破碎以及装卸料工序产生的粉尘均配置有布袋除尘器 收集处理后通过排气筒有组织排放,输送带采用密闭式廊道,厂区定期喷洒降尘,粉 尘排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 的二级标准限值。

SO₂、NO₂、PM₁₀、PM_{2.5}、汞及其化合物年均浓度最大贡献值占标率为 PM₁₀: 10.8%, 小于 30%。项目各项污染物贡献值均很小,叠加背景值后的预测值远小于环境质量标准,经大气稀释扩散后,对大气环境和环境敏感目标影响不大。项目不需要设置大气环境防护距离。

3、噪声

通过选取低噪声设备、安装减振垫、隔音罩、消音器等,再经厂房墙体隔声、空间距离衰减后,根据预测结果,项目厂界四周昼间、夜间噪声预测值均能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求,项目噪声达标排放对周边环境影响小。

4、固体废物

项目运营期产生的一般工业固废集中收集后交由专人管理、集中收集后外面给有主体资格和技术能力的单位回收综合利用,其中废离子交换树脂、废滤袋直接交由厂商回收再利用,一般工业固废在厂区内暂存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求;危险废物分类收集并密闭包装后在厂区内危废贮存间暂存,委托有资质单位进行处理,危险废物在厂区内暂存执行《危险废物贮存污染控制标准》(GB18597-2023)要求;职工生活垃圾定期由环卫部门清运处置。固体废物经妥善处理后对周边环境产生的影响小,采取的固废处置措施可行。

5、地下水环境

项目不取用地下水,厂区进行分区防渗;氨水罐区四周设置围堰,储油罐以及危险废物存放场所地面均已硬化且设置防渗涂层,发生泄漏时可及时收集于防渗托盘内,不会溢出外环境;项目废水处理设施内壁以及废水收集管线采用耐腐蚀材质,四周尽量设置围堰,防止发生危险物质渗漏污染地下水。采取上述防渗措施后,消除了可能对地下水造成的影响,项目正常运营对周边地下水环境影响不大。

6、环境风险

项目环境风险防范措施可行,在严格落实安全评价报告、环境风险防范措施、应急预案等提出的相关要求条件下,环境风险可防可控,项目的环境风险水平是可以接受的。建设单位应严格执行相关风险防范措施、风险管理措施和风险应急预案的要求。

10.5 产业政策符合性及选址合理性结论

本项目属于区域集中供热工程,属于《产业结构调整指导目录(2024 年本)》中

鼓励类二十二条"城市基础设施"中第2款"城镇集中供热建设和改造工程",且项目已通过投资备案,建设符合国家、地方产业政策的要求。

本项目北侧、西侧和南侧均为空置闲地,用地类型均规划为三类工业用地,东侧隔马浦溪为自然山体,周边无环境敏感目标。项目位于园区东南角,距离各用热企业较近,有利于供热管网铺设,与周边环境相容性好。

10.6 环境管理与监测计划

1、环境管理

建设单位设立单独的组织机构,采用分阶段负责的方式对工程进行环境管理,认真落实各时期环境保护措施。运营期的环境管理重点是制定厂区污染总量控制指标、定期维护环保设施的正常运行、统计监测数据、环保资料的整理和归档、环保宣传和培训等。退役期的环境管理主要为跟踪剩余原料、污染物的去向和处理处置情况,做好设备登记和资料存档工作等。

2、环境监测计划

根据项目的特征和区域环境现状、环境规划要求,制定项目的环境监测计划,包括环境监测目的、频次、监测实施机构、监督机构等具体内容。监测重点为项目污染源监控。

3、竣工验收

建设单位应按《国务院关于修改〈建设项目环境保护管理条例〉的决定》(国务院令第 682 号)要求,在项目竣工后,按照规定的标准和程序,对配套建设的环境保护设施进行验收,编制验收报告。项目环保设施竣工一览表见表 9.4-1。

4、总量控制

项目生活污水排放量为 1663.34t/a,其中 COD 排放总量为 0.0832t/a、 NH_3 -N 排放总量为 0.0133t/a。生产废水排放量为 46350.37t/a,其中 COD 排放总量为 2.3175t/a、 NH_3 -N 排放总量为 0.3708t/a。废气污染物颗粒物排放总量为 22.08t/a、 $S0_2$ 排放总量为 70.735t/a、NOx 排放总量为 101.05t/a。

项目生活污水经市政污水管网进入马铺污水处理厂处理,所需总量由马铺污水处理厂统一调配,不再另行调剂总量。项目排放的废气污染物(颗粒物、汞及其化合物、氨)属于特征污染因子,为非约束性指标,无需进行排污权交易购买;另外 COD、NH₃-N、二氧化硫、氮氧化物需通过海峡股权交易中心购买取值,按照 1 倍量交易比例取得。

10.7 环境影响经济损益分析结论

本项目环保投资总额约 2249 万元,占工程总投资 21650 万元的 10.4%。本工程运营期在采取必要的环保措施后,可以实现社会效益、经济效益及环境效益的统一和谐发展。

10.8 公众意见采纳情况

建设单位通过网上公示和报纸等方式进行公众参与调查,均未收到公众意见和建议。建设单位承诺,项目投产后严格落实各项污染防治措施,确保生产过程中产生的废水、废气、噪声等污染物做到达标排放,从严执行环保管理,将可能对环境产生的影响降到最低至可接受水平,力争做到环境与经济发展的和谐统一。

10.9 总结论

三明市沙县青州片区集中供热能源综合利用项目位于福建省三明市沙县区青州镇马铺工业集中区 350427-20-A-38-1 地块,总投资 21650 万元人民币。本项目规模为:设计建设 2 台 40t/h 低压多燃料循环流化床锅炉,采用煤炭和生物质作为燃料,配套建设 6.7 公里园区蒸汽管网,满足三明市沙县马铺产业园、长桦集中区工业企业生产用汽需求,建成后年供 1.6MPa、230℃蒸汽 34.56 万 t。

项目建设符合国家产业政策,符合马铺工业集中区控制性规划调整要求、片区规划环评及审查意见要求、三明市"三线一单"要求,与周边环境相容,项目选址合理可行。项目运营期主要环境影响因素为废水、废气、噪声和固废,对区域环境会造成一定的不利影响,经采取综合性、积极有效的污染防治措施并确保污染物达标排放后,可避免或减少这些不利影响,项目投产后正常运营时产生的污染影响均在环境可接受得范围内,在项目环境影响报告书征求意见稿网络公示期间,没有收到公众意见和建议。

综上所述,建设单位应认真落实各项环境保护要求及污染治理措施,并加强日常环境管理,确保各项污染物达标排放、满足区域环境功能区划和总量控制的要求。从 环境保护角度看,该项目建设是可行的。

10.10 建议

- (1) 严格执行环保"三同时"制度。
- (2) 企业应当建立环境保护责任制度,明确单位负责人和相关人员的责任,把企

业环境保护指标纳入企业管理的内容,严格公司内部管理,加强对公司员工的环保宣传教育,提高公司员工的环保意识。

- (3)建立健全职业病防治制度,完善职工就业前体检、定期健康检查和上岗前个 人卫生防护知识培训等制度,建立健康档案,落实职工劳动保护措施。
- (4)建设项目的环境影响评价文件未经法律规定的审批部门审查或者审查后未 予批准的,建设单位不得开工建设。
- (5) 若项目的性质、规模、地点、采用的生产工艺或者防治污染的措施等相关内容发生重大变动的,需重新进行环境影响评价。

	項目名称		三明市外具市州市	区集中供热能源综合利用项		境影响报告书	its who was	3/Anot	项目经办人	(第字) . 岩	4469	
	项目代码		2410-35	0427-04-01-214345			HAR THE				多建设6.7公里班区蒸汽管网 。	
	环评价用平台项目编号		THE REAL PROPERTY.	125191			A	1	TO THE PARTY OF MARKET	2:	50°C)	建成后年供蒸汽34.56万1(1.
	建设地点	青州镇马辅工业组	集中区350427-20-A-38-1	地块,背州镇康健路以西。	经五路以东, 纬二路	10 0	THE PERSON LAND	19		Go die Mic	*C34, 56751	
	项目建设周期 (月) 环境影响评价行业类别			22. 0		计划开	LINE EN	15:			5年12月	
	建设性质	100		和供应业-91. 热力生产和供	应工程	预计投	DENTINE STATE	1			7年10月	
T WAR	许可证或排污登记表编号(改、扩		- SF	建 (迁建)			化类型及代码	1			力生产和供应	
1-127-13	建项目)			現有工程排污许可管理类 別(改、扩建項目)		ACH O	The state of					
	規划环评开展情况			有		The second secon	青条别(1)			新州	中报项目	
	规划环评审查机关		= 86	市生态环境局			学文件名		沙县青	州化工产业集中区时	区控制详细规划环境影响报告	节书
	建設地点中心坐标	经度	117. 96551	NO. OF THE RESERVE		The state of the s	查意见文号	Delinoperation of the	100.000	明环评	(2021) 12号	
	(非线性工程)		117. 90551	纬度	26. 486471	占地面积 (平方米)	24343	环评文件类别			环境影响报告书	
建设	地点坐标 (线性工程)	起点烃度		起点纬度		終点股度		终点纬度		工程长度	Control of the	
ALC: NO	总投资 (万元)		1	1650.00		环保投资	(万元)	2249	00	(千米) 所占比例(%)		100000
	单位名称	三明市沙县	正通檐源有限公司	法定代表人	刘达元	Managara Allanda	单位名称	中新緑能(厦门)		新古比例 (%) 统一社会信用代码		10.40 212MASRYLSEXK
Salasa	统一社会信用代码			主要负责人	が称	环评		姓名	陈俊杰	STATE OF THE PARTY	913502	112MADKYLBBXK
	(组织机构代码)	913504	27MADLEQN03C	TOTAL STREET,	75.10	编制	编制主持人	信用编号	BH056748	联系电话	Service States	
				联系电话		单位		职业资格证书 管理号	0352024053500000 0022			
	通讯地址	桶	建省三明市沙县区风岗金	学东路451号和岸辖园17幢	1202室		遊讯地址			建省厦门市思明区塔坦	埔东路171号1004单元之一	
	污染物	現有工程	(己建+在建)	本工程 (报建或调整变更)			品体	工程 (己建+在建+报及	A CONTRACTOR OF THE PARTY OF TH		NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	
		①排放量 (唯/年)	②許可排放量 (吨/年)	③預測排放量 (吨/年)	④ "以新帝老	"削減量(吨/年)	⑤区城平衡替代本工	図形域書 (nb/bt)	⑥預測 排	放总量	⑦拌放塔减量	区域削減量未設(国達 級审批項目)
DESCRIPTION OF THE PARTY.	废水量(万吨/年)		5 4 5	4, 801				1000000 (747)	(DE/		(吨/年)	
THE SA				23, 969					4. 80		4. 801	
	COD								23. 9	00	23, 969	
	COD			0.058			1000000					
				0. 058					0. 05		0.058	
	製製 製製 企業 公司			0, 058								
废水	製製 基礎 基製 相			0, 058								
废水	概集 总数 必数 初 未			0, 058								
废水	製製			0.058								
废水	製製 品類 品製 租 業 機 機			0, 058								
废水	製製 总额 总额 机 水			0.058								
废水	製製 品類 品製 租 業 機 機			0.058					0.05	8	0.058	
废水	製製 总額 总额 组 汞								161600.00	8	0, 058	
废水	製製 協議 結製 指 示 術 特 美企園時 其他特征污染物 放气量 (万标立方来/年) 二氧化碳 氣紙化物			161600,000 70,735 101,050					0.05	8	0.058	
废水	版版 总版 位 证 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			161600.000 70.735					0. 05 161600. 00 70, 735	8	0, 058 161600, 000 70, 735	
废水	製製 基質 基質 植 液 衛 等 歩金翼់ 其他物征污染物 胺气量 (万标立方米/年) 二氧化碳 氣氧化物 類似物 類似性有机物			161600,000 70,735 101,050					0. 05 161600. 000 70, 736 101, 060	8	0, 058 161600, 000 70, 735 101, 050	
	製飯 島飯 島飯 租 東 衛 物 美金麗神 其他物征污染物 変气盤(万珍立方米/年) 二氧化碳 飯気化物 顕彰物 邦及性有机物			161600,000 70.735 101.050 22.080					161600,000 70,735 101,050 22,080	8	0, 058 161800,000 70, 735 101, 050 22, 080	
	製製 基質 基質 植 液 衛 等 歩金翼់ 其他物征污染物 胺气量 (万标立方米/年) 二氧化碳 氣氧化物 類似物 類似性有机物			161600,000 70,735 101,050					0. 05 161600. 000 70, 736 101, 060	8	0, 058 161600, 000 70, 735 101, 050	

	E PARTY IS	NH,			4, 752						752	4. 752			-
		影响及主要	會施 生态保护目标		28	00.90	主要保护对象(目标)	工程影响情况	是否占用	占用面积 (公頃)		生态防护	計 施		
	Si allegilio	生态保护红线	DASS TES								日 最让日 英级日	补偿 □ 重建 (多选)			
可目涉及法律	***	自然保护区	BERNAND SERVICE					核心区、缓冲区、			日 着让日 城後日	补偿 間 重建 (多选)			
规规定的保护	MIT .	饮用水水凝保护区 (地	表)	-	Up to the second		1	一级保护区、二级			日曜は日 英郷日	补偿 🔲 重建 (多选)			
情况		 大用水水 源保护区 (地					1	佐崎区 東京島区 一銭保护区、二級 佐崎区 東京島区			日 耕止日 咸畑日	朴莹 🔲 重建 (多选)			
		风景名胜区					1	核心景区。一般景区			日 雅比日 英樹田	补偿 国 重建 (多选)	9		
		其他			See						日 避让日 英郷日	补偿 □ 重建 (多选)	1/1		
William Ho	O TO SERVE		10 to		主要原料	STATE OF THE STATE	ma Sis	A STATE OF THE STA	The state of the s	1 102 S		主要燃料			
	序号	- 8	*	年	最大使用量	##	单位	有專有書物质	及含量 (%)	序号	名称	灰分(%)	英分(%)	年最大使用量	计量单位
医原料及燃	1	石族	1		792	t	/a		The state of the s	1	煤	18. 48	0.39	87360	t/a
信息	2	- N.			480		/a			2	生物质	0.95	0.06	37440	t/a
	3	催化			2		/8								
	5	轻型			128, 65		/a								_
Y	8	शः	NAME OF TAXABLE PARTY.	STATE OF THE PARTY	污染防治设施工艺	CONTRACTOR OF STREET	/a 生产	WHAT THE PARTY OF	DESCRIPTION OF THE PARTY OF THE	Will Street Print	101	杂物排放	100000	-	- North
	序号(编号)	排放口名称	排气简高度 (米)	序号(编号)	名称	污染防治设施处理教 享	序号 (编号)	名称	污染物种类	排放浓度(毫克/ 立方米)	排放速率 (千克/小时)	排放量(吨/年)		排放标准名称	
	DAGOL	破碎楼粉尘排口	NE NE SERVICE DE	TANK	布装除尘	of the second		破碎机	類粒物	8, 73	0.07	0.559			
A 5 1 5 1	DA001	Secretary and the second	15	TA001		90	-		類粒物	4. 38	0.035	0. 28			
	DA002	护射煤仓粉尘排口	15	TA002	布装除尘	90		炉前煤仓		12/01/20	(0.000)				
SOME STATE OF	DA003	生物质破碎粉尘排	15	TA003	布袋除尘	90		破碎机	颗粒物	3, 75	0.03	0.24	《大气污染》	物综合排放标准)	(GB16297-
有銀织 排放(主	DA004	企業口	15	TA004	布袋除尘	90		炉前生物质仓	颗粒物	1.88	0.015	0.12	1996) 中表	2的二级标准限值	
要排放	DA005	灰库粉尘排口	15	TA005	布袋除尘	90		灰库	颗粒物	9.92	0.079	0, 635			
П)	DA006	石灰石仓粉尘排口	15	TA006	布袋除尘	90		石灰石仓	颗粒物	0.56	0, 005	0.036			
						99, 95			颗粒物	10	5, 106	20.21	(关于全市	「推进锅炉污染整 」	6保课遗迹包
					低氢燃烧技术+SNCR-高温	95			二氧化碳	35	17.869	70, 735		意见》(国环提〔	
	DA007	網件問題	45	TA007	SCR脱硝工艺+多管除尘-	80		保护	製氧化物	50	25. 528	101.05	(49.40 ±	气污染物排放标准) (CR) 327
	DAOO7	842.94, VARIDA	40	17001	布袋除尘+石灰石-石膏湿 法脱硫装置	70			兼	0.05	0,026	0.101		3中燃煤锅炉大气	
						0			策	2. 28	1.164	4, 608		业锅炉污染防治可 (78-2021) 控制泵	
									. 即日本於如此		污染物样的	t and some state			
	F	7			无组织排放源名称			污染物种类	排放浓度 (毫克/立方米)			排放标准名称			
	1				一期厂区喷漆车间			非甲烷总烃			55-22-512-512-522	染物排放标准》(DB35			
无组织	2				一期厂区木作车间		F. 18 18	颗粒物	1			染物排放标准) (DB35			
持放	3				三期厂区喷津车间			非甲烷总烃				5条物排放标准》(DB35			
	4				三期厂区木作车间		100	颗粒物	1.3		《厦门市大气》	5条物排放标准》(DB38	5/323-2018)	表1排放限值	
	5				污水处理站			NH ₃		(源泉	(污染物排放标准) (G	814554-93) 中表1恶臭污	染物厂界标	准值二级"新扩き	文建"联值
	MADOZ SATE	District Control of	AND STREET	ANT CHIEF STATES	SIES AND SIES OF							污染物排放			1800/40
车间或生	序号(编号)	排放口名称		慶水类別		序号 (编号)	污染防治设施工艺名称	污染治理设施处理	排放去向	污染物种类	排放浓度 (毫克/升)	排放量 (吨/年)	排放标准	名称
#E		No. of Concession, Name of Street, or other party of the last of t	TO STATE OF STATE OF		The second second second			水量(吨/小时)		废水量		46350, 37		水综合排放标准》	
设施排放										100,745,88L				级标准以及马辅	

#
日本の日本 日本
1 1 1 1 1 1 1 1 1 1
Record
20
(直接性 放)
1
1 分液 锅炉使用
2 毛灰 锅炉使用 / SN02:900-001-S02 5124 灰库 70.0 / -板工业 3 脱硫石膏 锅炉废气税或处理 / SN06:441-001-S06 127.55 石膏贮存回 5.0 / B体疫物 4 废离子交换树脂 净水设施 / SN59:900-099-S59 3.7 /
Name
編集後報 4 度离子交換網階 净水设施 / SW59:900-099-S59 3.7 / / 5 沉淀池河泥 生产度水处理 / SW7:900-099-S07 2.177 污影暫存区 1.0 晾干后捧徒 / 6 废途整 粉尘处理 / SW59:900-009-S59 0.2 / / / 1 废帐化剂 锅炉皮气板锅处理 百 1050:772-007-50 3 免疫贮存间 1.5 / 2 股底度水污泥 蜗炉皮气板破处理 特鉴定 7 27.61 免疫贮存间 14.0 2 股底度水污泥 銀炉皮气板破处理 特鉴定 27.61 免疫贮存间 0.5 / 4 空油槽 机合保养 T.1 118/08:900-041-49 0.08 免疫贮存间 0.08 /
6 皮維染 粉尘处理 / S#59:900-009-S59 0.2 / / 1 皮催化剂 锅炉皮气烧锅处理 T 10:50:772-007-50 3 急皮贮存间 1.5 // 2 投板皮水污泥 锅炉皮气脱硫处理 特鉴定 特鉴定 27.61 危皮贮存间 14.0 // 4 空油桶 机合保养 T/In 1009:900-041-49 0.08 急皮贮存间 0.08 //
B 传递校 粉尘处理 / S#59;900-009-S59 0.2 / / 1 废催化剂 锅炉废气板锅处理 T 1050;772-007-50 3 免废贮存间 1.5 // 2 股级废水污泥 锅炉废气瓶锅处理 待鉴定 27.61 危废贮存间 14.0 // 3 废机油 机合保养 T, 1 1700;900-249-08 0.5 危废贮存间 0.5 // 4 空油桶 机合保养 T/In 17499;900-041-49 0.08 危废贮存间 0.08 //
2 N級 政 成 大 行記 級 か 废 气 版 成 处 理 特 鉴定 特 鉴定 技 整定 2.7.61 危 成 贮 程 同 14.0 / 有 股 数 3 皮 机 油 机 台 保 养 T, 1 1 回 05: 900-249-08 0.5 危 成 贮 程 同 0.5 / 4 空油 桶 机 台 保 养 T/1n 1 同 49: 900-041-49 0.08 危 废 贮 程 同 0.08 /
地域物 机合保养 T, 1 H/08: 900-249-08 0.5 危度贮存同 0.5 / 4 空油桶 机合保养 T/In IN49: 900-041-49 0.08 危度贮存间 0.08 /
4 空強権 机台保养 T/In INF49: 900-041-49 0.08 危疫贮存间 0.08 /
3.400.00
5 含油炭珠布 机合保养 17/18 1849: 900-041-49 0.02 起改工作用 0.02 /